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Figure 7.9 CIN can be reduced by (a) large-scale rising motion, (b) low-level moistening (e.g., moisture advection), and
(c) low-level warming (e.g., insolation), despite the fact that the CIN modifications may not be accompanied by lapse rate
changes, at least not over a significant depth. In (a)-(c), the isotherms and isentropes are solid gray lines, the constant
mixing ratio lines are gray dashed lines, the sounding and trajectory taken by an air parcel lifted from the surface are solid
and dashed black curves, respectively, and the modified sounding and parcel trajectory are blue solid and dashed curves,
respectively. In (a), for clarity, only the temperature profile has been modified (the moisture profile has not been modified
in accordance with the vertical motion that has been imposed in the layer of the capping inversion). Note that (b) and (c)
are also accompanied by increases in CAPE. Conversely, CIN is augmented by large-scale descent, boundary layer cooling
(although this would typically not occur without a concurrent stabilization of the lapse rate), and boundary layer drying
(not shown).
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L£IREIRT Convective rolls

12 August 1991
Cloud Development along the
Sea-Breeze Front during an
Offshore Flow Regime

Figure 7.11 Schematic diagram showing the interaction between the sea-breeze front and horizontal convective rolls and
how it related to cloud development on 12 August 1991 during the Convection and Precipitation/Electrification Experiment
(CaPE). The sea-breeze front is delineated by the heavy blue barbed line. The circulation along the leading portion of the
sea-breeze front is shaded purple. The horizontal vorticity vectors associated with the counter-rotating roll circulations are
also shown, as are clouds along the horizontal convective rolls and at the intersection points along the front. The shear
vector and low-level winds are indicated with black and green arrows, respectively. This is the same case as shown in Figure
5.33. (Adapted from Atkins and Wakimoto [1995].)
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Figure 3.11. [llustration of air trajectories that produce Miller “Type 1" soundings
in the United 5tates. Composite chart for May 4, 1961, Limiting trajectories for the
moist, trade-wind flow (thick line: height of top of layer indicated in tens of mb)
and the top of the Mexican air (thin line; height marked in tens of mb}. Flow in the
high troposphere, at about 220 mb (dashed line). Altus (A) and Oklahoma City (Q)
denoted by full circles (from Carlson and Ludlam, 1963; courtesy Toby Carlson),

Bluestein (1993)
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“Tropical Sounding”
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Figure 3.12 Example of a Miller “Type II" sounding in the United States. Skewed
abscissa and logarithmic ordinate are temperature (°C) and pressure (mb).
moist-adiabat along which
surface air parcel ascends (dot-dashed line). For Centerville, Alabama, 0000 UTC,
August 17, 1985. This sounding was associated with a tornado outbreak and the
remains of Hurricane Danny (from McCaul, 1987).

Temperature (solid line);

Meteorological Society)

Bluestein (1993)

dew point (dashed line);

(Courtesy of the American
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(3) F=KmMillerif=, “Cold-air sounding”
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Figure 3.13 Example of a Miller "“Type I1” sounding in the United States.
Sounding for Oakland, California, 1200 UTC, September 10, 1985. Skewed abscissa
and logarithmic ordinate are temperature (°C) and pressure (mb), respectively. The
plot of temperature and dew point are given by the thick solid and dashed lines,
respectively. Winds plotted at the right; whole barb=5ms '; half barb=
2.5 ms~'. A waterspout was reported over nearby San Francisco Bay near the time
of this sounding. A cold upper-level low was situated over Northern California.
Note the relatively cold —25°C temperature at 500 mb, and the relatively low
tropopause (about 325 mb); also note the weak vertical wind shear and light land
breeze at the surface from the southeast.

Bluestein (1993)
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Figure 3.14 Example of a Beebe “Type IV” sounding in the United States (Desert
Rock Airport, Mercury, Nevada at 0000 UTC, August 8, 1978). Skewed abscissa and
logarithmic ordinate are temperature (°C) and pressure (mb). Temperature (solid
line); dew point {dashed line); lines of constant saturation water-vapor mixing ratio
([dash-dotted lines); moist adiabat at and above CCL (dotted line). The author
observed a tornado in the Sierra Nevada region of California in an environment

that was probably similar to this sounding {from Bluestein, 1979). (Courtesy of the
American Meleorological Society)

Bluestein (1993)
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Figure 3.14 Example of a Beebe “Type IV” sounding in the United States (Desert
Rock Airport, Mercury, Nevada at 0000 UTC, August 8, 1978). Skewed abscissa and
logarithmic ordinate are temperature (°C) and pressure (mb). Temperature (solid
line); dew point {dashed line); lines of constant saturation water-vapor mixing ratio
(dash-dotted lines); moist adiabat at and above CCL (dotted line). The author
observed a tornado in the Sierra Nevada region of California in an environment
that was probably similar to this sounding {from Bluestein, 1979). (Courtesy of the
American Meleorologlcal Society)

Bluestein (1993)
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General Features of Squall Lines in East China

ZHIYONG MENG, DACHUN Y AN, AND YUNIJI ZHANG

Laboratory for Climate and Ocean—-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences,
School of Physics, Peking University, Beijing, China

Formation frequency of squall line
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FIG. 12. Examples of various environmental flow patterns at (a) 1800 UTC 17 Jul 2008 and (b) 0000 UTC 21 Aug 2008 for pre-short-
trough cases, (¢) 1200 UTC 4 Jul 2008 and (d) 0000 UTC 23 Jul 2008 for pre-long-trough cases, (e) 0600 UTC 3 Jun 2009 and (f) 0000 UTC
14 Jun 2009 for cold-vortex cases, (g) 0000 UTC 29 Jun 2008 and (h) 0600 UTC 7 Jul 2008 for subtropical-high cases, and (i) 0000 UTC
16 May 2008 for posttrough cases. Plotted are geopotential height [blue contours, 10 geopotential meters (gpm)], temperature (dashed red
contours, K) at 500 hPa, column-integrated PW greater than 55 kg m ™~ (green contours, kg m ™), vertical shear vector between 700 and
1000 hPa with the magnitude larger than 8 m s~ ' [the representative wind vector is given in the bottom-right corner of (a)], and wind
speed larger than 9 m s~ at 850 hPa (shaded, every 3 m s~ '). The double solid brown lines denote the trough at 500 hPa. The red solid
contour and the double solid black lines in (i), respectively, denote the geopotential height (10 gpm) and the trough at 850 hPa. The places
where the convection of the squall line was initiated are marked by red dots. The white dots indicate the areas that also have a possibility of
squall-line formation near a TC. Here, H and L denote the high and low pressure centers at 500 hPa, respectively. The TC centers are
given by the red typhoon marks in (a) and (b).
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On the Squall Lines Preceding Landfalling Tropical Cyclones in China

f \ N/ _ -\;, > ZHIYONG MENG AND YUNJI ZHANG
x I X E) Laboratory for Climate and Ocean—Atmosphere Studies, Department of Atmospheric and Oceanic Sciences,
m - School of Physics, Peking University, Beijing, China

Representative mosaics, isochrones with formation and dissipation times
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0808 Fung-Wung

0905 Soudelor 2009/07/10 1330 UTC 0907 Goni 2009/08/04 2130 UTC 0908 Morakot 2009/08/06 1630 UTC

Through 2007 - 2009:
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FIG. 8. Composite analysis of 925-hPa frontogenesis [10° K km™" (3 h)™"; shaded], 850-hPa geopotential height
(black contour every 10 gpm), and wind vector (full barb =10 m s~ ') as well as column-integrated precipitable water
(red contour every 5 kg m ™ 2) for the 9 cases that have a westward motion component during 2007-09 at (a) —12, (b)
—6, (c) 0, and (d) 6 h relative to the formation time 7 of pre-TC squall line. The solid square denotes the median of
the formation locations of the 10 pre-TC squall lines at time 7. The red TC mark denotes the TC center. (¢),(f) As in
(a)—(d), but for the TCs that are not associated pre-TC squall lines at 18 and 6 h before landfall.
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Table 2. Comparison between averages of derived properties of the environmental

soundings 1n front of squall lines in different studies

Averages of derived properties | CAPE CIN LI (K) LCL PW

(J kg']) (J kg'l) (hPa) (cm)
Pre-TC squall lines 1548 67 -3.6 899 6.1
Bluestein & Jain (1985) 2260 33 2.8
Parker &Johnson (2000) 1605 5.4 831 3.4
Wyss & Emanuel (1988) 1208 76
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Environment: Instability & Moisture
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Vertical motion: Synoptic forcing
(b) Wind Speed and H 200hPa 04!06UT§
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FIG. 12. 200-hPa wind speed (shaded according to the color bar in m s™') and geopotential height (solid contour
every 10 gpm) at (a) 0000 and (b) 0600 UTC 4 Aug 2008. (c¢),(d) The dynamic tropopause (DT) potential temperature
(shaded according to the color bar in K) and wind (full barb = 10 m s™') at 0000 and 0600 UTC 4 Aug 2008. The
heavy short line denotes where the convection was initiated.




Vertical motion: Mesoscale forcing

Surface streamline and convergence (shaded)
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FIG. 9. Surface flow and convergence (shaded; 107*s71) at (a)
0400 and (b) 0600 UTC 4 Aug 2008. The short heavy line represents
the orientation of linear growth of initial convection.



Ordinary cell convective storm
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Figure 3.2a. Elevated convection. (Top) Sounding at Norman, OK (OUN) at 12:00 utc on
March 8, 2012; elevated thunderstorms as depicted by WSR-88D composite radar reflectivity
in dBZ (bottom) occurring north of a cold front (dashed line at the bottom) as air flowing from
the southeast (arrow in the bottom panel) rises over the frontal zone (stable layer between 920
and 870 hPa. In the top panel the elevated LCL is indicated as a saturated layer between 880
and 750 hPa. Surface parcels lifted will not attain an LCL. Above the elevated LCL, air parcels
follow the moist adiabat (dashed line), where CAPE is realized.



Figure 3.2b. (Top) Altocumulus castellanus over Norman, OK on September 28, 1977 and
(bottom) July 26, 1978. The bases of the clouds are flat and above the boundary layer. The
clouds are also aligned in streets, possibly in response to lifting by bores (photographs by the
author).



Figure 3.4. Illustration of entrainment of environmental air into a cloud (curled streamlines
into curling, rolling, cumulus elements) on July 2, 2011 in Boulder, CO. Air enters the cloud
base from below and from the sides. As a result of entrainment, the mass flux of air detraining
from the cloud at the top exceeds the mass flux into the cloud base below (photograph by the
author).



Figure 3.5. Cumulonimbus anvil on September 9, 2009, in Boulder, CO. Three separate bursts
of convection are evident (each burst indicated by an arrow) (photograph by the author).




Figure 3.7. Anvil dome (penetrating top) at the top of a convective storm. (top) Tornadic
supercell southeast of the National Weather Center, Norman, OK, May 21, 2011 (photograph
by the author); (bottom) convective storm viewed from above by International Space Station
on February 5, 2008, over Mali in western Africa (from NASA).
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Figure 3.8. Schematic of airflow over a dome at the top of a convective storm in eastern
Oklahoma on May 1, 1980. Streamline shown is indicated for flow near the top of the storm
when the storm is propagating more slowly than the wind speed. Air is lifted over the dome and

then undergoes stable vertical oscillations downstream from the dome (photograph by the
author).

’n

Y ¢ ‘ ‘é

%’. 'n:.r

Figure 3.9. Waves in the anvil of a convective storm (caused by gravity waves) on July 9,

2009, over the upper Midwest of the U. S., as seen by the NOAA 15 satellite (from Martin
Setvak).
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Figure 3.11. Color-enhanced infrared signatures at anvil top. (Left) Cold rings in two
convective storms over central Europe as detected by METEOSAT-8. (Right) Cold UV
signature in a convective storm over Germany on May 26, 2007, as depicted by
METEOSAT-9 (from Martin Setvak).



(b)

Figure 3.12. (a) Cloud base in a supercell that has striations like an orographic wave cloud, on
May 29, 2008, north central Kansas. (b) Orographic wave clouds in the lee of the Rockies just
west of Ward, CO on January 2, 2008 (photographs by the author).



Figure 3.16. Long anvils. (a) Cumulonimbus with a long anvil downstream, as viewed from an
aircraft over southwestern Nebraska on July 19, 2009. (b) Developing cumulonimbus in
Oklahoma on April 30, 2003 (photographs by the author).



Figure 3.17. Cumulonimbus (developing supercell) with a symmetrical, mushroom-like anvil,
on May 26, 1997 in eastern Oklahoma (photograph by the author).



Figure 3.18. Orphan (or “orphaned”) anvil on March 15, 2012, Ft. Lauderdale, FL. (Top)
Convective storm is dissipating, with precipitation falling; (bottom) anvil has become dis-
connected from the cloud below and most of the precipitation has ended (photographs by
the author).
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Figure 3.19a. Stages in the life of a Byers—Braham, ordinary-cell convective storm. (Top left)
Cumulus congestus stage, on August 28, 1971, over the South Florida peninsula, south of
Miami; (top right) cumulus congestus about to hit the tropopause and producing a pileus, on
August 28, 1971; (second row, left) mature stage, with an anvil, on August 28, 1971; (second
row, right) dissipating stage, off the west coast of South Florida, on August 28, 1973 (photo-
graphs by the author). (Bottom) Sounding at Miami, Florida, 00:00 utc on August 29, 1971,
which is a representative environmental sounding for the convective storm on August 28, 1971
(from the Plymouth State College archive and graphics). Vertical shear is weak and CAPE
moderate.
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