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Figure 8.11 Schematic of the evolution of multicellular

convection. Refer to the text for details. (Adapted from
Doswell [1985].)
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Figure 8.12 Comparison of lifting by the gust front in (3) a no-shear, single-cell environment and (b) a moderate-shear,
multicell environment (the shear is westerly). Rain and hail are schematically indicated by the green and yellow shading.
Evaporatively cooled outflow is shaded dark blue. Cloud is white. Some select storm-relative streamlines are shown as
black arrows. The LFC is also indicated. The sense of the horizontal vorticity induced by the cold pools is indicated with
white circular arrows. In (b), the sense of the horizontal vorticity associated with the environmental vertical wind shear
is indicated with purple circular arrows. Moreover, the modification of the depth and slope of the leading portions of the
cold pool by its interaction with the environmental shear, along with the effect on the nature of the lifting along the gust
front, is also reflected in (b). Compare the depths of the western and eastern outflow heads in (b) to each other, as well
as to those drawn in (a).
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A supercell with a hail core near Stratford, Texas on May 18, 2023.
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A schematic of supercell
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Bounded weak echo region (BWER)
WER at lower levels
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Figure 8.19 Perspective view of a supercell depicting storm-relative airflow and reflectivity structure. The reflectivity
contours are 10, 30, and 50dBZ. The rear-flank gust front also is shown. (Adapted from Chisholm and Renick [1972].)

22 of 69



2) Cloud features
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Overshooting cloud
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Hanging protuberances, like pouches, on the

Mammatus clouds
undersurface of a cloud.
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Mammatus clouds
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Mammatus clouds
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Shelf clouds

A low-level, horizontal, wedge-shaped arcus cloud associated with a convective storm's gust
front (or occasionally a cold front).

The shelf cloud is attached to the convective storm's cloud base. Rising motion can be seen in
the leading (outer) part of the shelf cloud, while the underside appears turbulent and
tattered.
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3) Flanking line
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4) Downdraft

a. FFD: Forward-flank downdraft
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4) Downdraft
b. RFD: Rear-flank downdraft, near hook echo
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5) Inflow lows
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6) BEKDT CL: classic supercell
LP: low-precipitation supercell

HP: high-precipitation supercell
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LP: low-precipitation supercell
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LP: low-precipitation supercell
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HP: high-precipitation supercell
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HP: high-precipitation supercell
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7) mesocyclone
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8) effects

Supercells can produce hailstones averaging as large as
two inches (5.1 cm) in diameter, winds over 70 miles per
hour (110 km/h)lclariication needed] ' tornadoes of as strong as
EF3 to EF5 intensity (if wind shear and atmospheric
Lakélggéerior == instability are able to support the development of stronger
ol tornadoes), flooding, frequent-to-continuous lightning, and
very heavy rain. Many tornado outbreaks come from
clusters of supercells. Large supercells may spawn
multiple long-tracked and deadly tornadoes, with notable
examples in the 2011 Super Outbreak.

Wisconsin

.v . . i '..:‘ . .
Mignesalbe 8 ' Sl | Sotte o pii Severe events associated with a supercell almost always

This NOAA-15 pass captures the tornadic super-cell

Sirhreteri e | ot 28 4 occur in the area of the updraft/downdraft interface. In
, : S ; e the Northern Hemisphere, this is most often the rear flank

(southwest side) of the precipitation area
in LP and classic supercells, but sometimes the leading
edge (southeast side) of HP supercells.

50 of 69


https://en.wikipedia.org/wiki/Wikipedia:Please_clarify
https://en.wikipedia.org/wiki/Tornado
https://en.wikipedia.org/wiki/Lightning
https://en.wikipedia.org/wiki/Tornado_outbreak
https://en.wikipedia.org/wiki/2011_Super_Outbreak
https://en.wikipedia.org/wiki/Northern_Hemisphere

Note

a. KFREMNNRZEZETLD
b. LP, CL, HP5EEfJstorm-relative wind Z1Y]4H%.,
HP <18 m/s
18 m/s < CL< 28 m/s
28 m/s < LP
REFE X EELPECLA T ERHER.
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Low Clouds: Cumulus

FIGURE 1.3 (a) Cumulus humilis. (b) Cumulus congestus over Puget Sound near Anacortes, Washington. (a) Photo by Ronald L. Holle. (b) Photo by
Steven Businger.

non-precipitating
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Low Clouds: Cumulonimbus

FIGURE 1.4 Time sequence showing cumulus congestus developing into cumulonimbus south of Key Biscayne, Florida. Photos by Howard B.
Bluestein.

precipitating
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Low Clouds: Cumulonimbus

FIGURE 1.6 Visible wavelength satellite photograph of cumulonimbus
anvils of supercell thunderstorms over Kansas, Oklahoma, and Texas.

(Bar ~100 km.)

FIGURE 1.5 Anvil of a cumulonimbus, as seen from Cimarron, Col-
orado. The anvil is classified as cirrus spissatus cumulonimbogenitus. If
the anvil were more widespread, as from a line or group of cumulonimbus
clouds, it would be classified as cirrostratus cumulonimbogenitus. Photo by

Ronald L. Holle.
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Low Clouds: Stratus

FIGURE 1.8 (a) Stratus cloud seen from the (a)
ground. (b) Stratus seen from Denny Mountain.
Snoqualmie Pass, Washington. (a) Photo by Reid
Wolcott. (b) Photo by Steven Businger.
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Low Clouds: Stratocumulus

FIGURE 1.9 (a) Stratocumulus near Mitchell, South Dakota. (b) Stratocumulus seen from aircraft over the Atlantic Ocean, west of the southwest coast of

England, toward north. (a) Photo by Arthur L. Rangno. (b) Photo by Ronald L. Holle.
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Low Clouds: Stratocumulus

FIGURE 1.11 (a) Satellite view of stratocumulus off west coast of South America. (b) Satellite view of stratocumulus off the eastern and southeastern
coast of North America. NASA photos.
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Low Clouds: mixed clouds

FIGURE 1.10 “Cloud streets” viewed from aircraft. Photo by Daniel
Melconian, obtained with the photographer’s permission via the Cloud

Appreciation Society, with the aid of Gavin Pretor-Pinney and lan Loxley.
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Low Clouds: Nimbostratus

FIGURE 1.12 Nimbostratus. From Guemes Island, looking toward
Orcas Island, Puget Sound, Washington. Photo by Steven Businger.
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Low Clouds: Fog

2 v ’ 1 . . 3 f &
PA 10 28 et e SRR i SR ‘ b SO T
FIGURE 1.7 (a) Steam fog over a pond. (b) A shallow layer of radiation fog, sometimes called “ground fog.” (c) Satellite view of fog in California’s
Central Valley. (d) Satellite view of advection fog and stratus cloud along the west coast of the United States. (a) Free photo from cepolina.com. (b) Photo
by Matthias Suessen. (c) NASA image, bar ~ 100 km. (d) NASA satellite photo, bar ~ 100 km. 61 of 69



Middle Clouds: Altostratus

FIGURE 1.13 Altostratus. Bodg, Norway. Phbto by Steven Businger.
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Middle Clouds: Altocumulus

FIGURE 1.14 (a) Altocumulus stratiformis in the form of cellular clumps. (b) Altocumulus stratiformis in the form of long rolls (undulatus). (c) Alto-
cumulus castellanus. Seattle, Washington. (a, b) Photos by Ron Holle. (c) Photo by Arthur L. Rangno.
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High Clouds: Cirrus, Cirrostratus, Cirrocumulus

FIGURE 1.17 Cirrostratus with halo. Photo by Reid Wolcott.

FIGURE 1.15 (a) Cirrocumulus stratiformis in the form of both undulatus and cells. Seattle, Washington. (b) Cirrus floccus. Durango, Colorado.
(c) Cirrus uncinus. Durango, Colorado. (d) Cirrus fibratus vertebratus. Durango, Colorado. Photos by Arthur L. Rangno.




Orographic Clouds

FIGURE 1.21  Looking upwind at a lenticular wave-cloud band (foreground) forming in the lee of the Continental Divide, which is far beyond the foot-
hills seen in the foreground. Boulder, Colorado. Photo by Dale R. Durran.

FIGURE1.18 Cap cloud over Mount Rainier, Washington. Photo by Ken
Vensel.

FIGURE 1.22 Looking downwind at a series of lenticular wave clouds in the lee of the Continental Divide. Boulder, Colorado. Photo by Dale R.
Durran.

FIGURE1.19 Horseshoe shaped cloud (Turusi) in lee of Mt. Fuji, Japan.

FIGURE 1.20 Stacks of lenticular clouds in the lee of Mt. Rainier, in Photo taken in 1930 by Masanao Abe: see Abe (1932)f0]‘ details.

Washington State. Such clouds have sometimes been reported as UFOs.
Photo by lan Bond.
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Orographic Clouds
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FIGURE 1.23 Turbulent rotor cloud downwind (left-hand side of the
photo) of the Sierra Nevada mountain range in the Owens Valley near
Bishop. California. Downslope winds gather dust on the valley floor and
serve as a tracer of the air rising suddenly up into the cloud. Over the moun-
tains themselves (upper right of photo), a portion of the Fohn wall cloud is
seen. Photo courtesy of Morton G. Wurtele.

FIGURE 1.24 Fohn wall cloud (right-hand side of photo) over the Dinaric Alps and turbulent rotor cloud (left-hand side of photo) downwind of the
mountains. Photo taken from an aircraft at about 6 km by Andreas Walker.
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FIGURE 1.25 Fohn wall cloud. Boulder, Colorado. Photo by Dale R. Durran.
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FIGURE 1.26 Banner cloud on the Matterhorn, Switzerland. Photo by Roger Colbeck.
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Noctilucent Clouds: 75-85km polar mesosphere

FIGURE 1.28 NASA Photo taken from the International Space Station. A thin layer of noctilucent cloud is seen in the mesosphere, which is well above

FIGURE 1.29 Noctilucent cloud seen from the ground. Photo by Martin Koitmde.
where the sun below the horizon is shining through the troposphere from below the horizon. NASA photo.
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(b) Bases <3 km, thickness 3—6 km
: . A

>

V "

FIGURE 1.35 Coverage by clouds with low bases, as seen by CloudSat
and CALIPSO satellites. (a) Stratus and stratocumulus frequency is indi-
cated by fraction of low clouds observed at each grid point that have bases
less than 3 km altitude and layer thicknesses less than 3 km. (b) Frequency
of moderately deep clouds (most likely moderately deep convective or
frontal clouds) seen at each grid point that have bases less than 3 km
and layer thicknesses between 3 and 6 km. (c) Frequency of deep clouds
(most likely deep convective or frontal clouds) seen at each grid point that
have bases less than 3 km and layer thicknesses greater than 6 km. The
original versions of these figures appeared in Mace et al., 2009. They
are republished here with permission of the American Geophysical Union.
However, they have been updated with a larger, 4-year dataset and have
been analyzed courtesy of Gerald Mace and Qiuging Zhang at 5 km res-
olution instead of 80 km resolution.
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FIGURE 1.36 Coverage by clouds with bases greater than 6 km as seen
by CloudSat and CALIPSO satellites. The original version of this figure
appeared in Mace et al., 2009. It is republished here with permission of
the American Geophysical Union. However, the figure has been updated
with a larger, 4-year, dataset and provided courtesy of Gerald Mace
and Qiuqing Zhang. The new analysis is at 5 km resolution instead of
80 km resolution.
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FIGURE 1.37 Coverage by clouds with bases between (a) 6-10 km, (b) 10-14 km, and (c) >14 km as seen by CloudSat and CALIPSO satellites. The
original version of this figure appeared in Mace et al., 2009. It is republished here with permission of the American Geophysical Union. However, the
figure has been updated with a larger, 4-year dataset and provided courtesy of Gerald Mace and Qiuqing Zhang. The new analysis is at 5-km resolution

instead of 80-km resolution.
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