


Optimal condition  Au = ¢

LT3Rl

- Au is line-normal vertical shear over 0-2.5km

- Cis the theoretical gust front speed, which is the square of twice the
integration of buoyancy in the cold pool over the depth of the cold

pool. H 7
—2/ BL dz =¥
0

For most thunderstorm outflows, RKW theory implies an optimal shear
of 17-25 m/s over 0-2.5km layer.



feaniroversy about RKW theory

* Shear vs. Severity : the vertical shear is significantly weaker than
required by RKW for many strong-wind producing squall lines
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Figure 9.24 Fujita’s conceptual model of a bow echo. Black dots labeled ‘DB’ are downburst locations. Colors are radar
echo intensity. (Adapted from Fujita [1978].)
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Formation of the cyclonic & anticyclonic circulation
J::hphi% = ,Ejri Ertel PV theorem
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The formation, character and changing
nature of mesoscale convective systems

Russ S. Schumacher@ ™ and Kristen L. Rasmussen

Abstract | Mesoscale convective systems (MCSs) describe organized groupings of thunderstorms
in the tropics and mid-latitudes that span thousands of square kilometres. While recognized

for over a century, the advent of satellite and radar observations, as well as atmospheric-model
simulations, has brought about their increased understanding. In this Review, we synthesize
current knowledge on MCS formation, climatological characteristics, hazardous weather,
predictive capacity and projected changes with anthropogenic warming. Driven by typical deep
moist convective processes (moisture, lift and instability) and vertical wind shear, MCS formation
occurs preferentially in locations where these ingredients are present and can be maintained by
large-scale ascent and the cold pools that they produce. MCSs also generate hazardous weather,
including extreme rainfall, flooding, derechos and, sometimes, tornadoes and hail, all of which
have substantial economic and societalimpacts. Given that MCSs also produce a large fraction
of warm-season rainfall, there is critical need for both short-term forecasts and long-term
projections, presently challenged by inadequate model resolution. Yet, with continually improving
modelling capabilities, as well as greater theoretical basis, it is suggested that MCSs might
increase in frequency and intensity under awarming climate. Further modelling progress, in turn,
offers improved understanding of MCS characteristics, from their life cycle through to impacts.
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Fig. 1| Key MCS types. Schematic illustration (left) and
observed infrared or radar retrievals (right) of a mesoscale
convective complex (panel a), squall line (panel b), bow
echo (panel c), training line/adjoining stratiform mesoscale
convective system (MCS; panel d) and back-building MCS
(panel e). Radar data in panels b—e are from the Multi-Radar
Multi-Sensor system***, MCSs can take on a wide variety of
structures, with the examples shown here among the most
highly organized. Schematics in panels d and e adapted with
permission from REF.*, © American Meteorological Society.
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a MCS contribution to total rainfall
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Fig. 2 | The contribution of MCSs to global rainfall. Fraction of annual rainfall produced by mesoscale convective systems
(MCSs) based on observations from the Tropical Rainfall Measuring Mission (TRMM) satellite between December 1997 and
September 2014 (panel a). Diurnal cycle of TRMM volumetric rainfall over the land (panel b) and ocean (panel c) between
36°N/S. In many parts of the global tropics, subtropics and mid-latitudes, MCSs produce a large fraction of the annual
precipitation. MCSs over land have a strong diurnal cycle, with rain maximized in the afternoon and evening, and minimized
in the morning; MCSs over ocean have a less pronounced diurnal cycle. Panel a adapted with permission from REF",

© American Meteorological Society. Panels b and ¢ adapted with permission from REF*°, © American Meteorological Society.
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Fig. 3| MCS frequency and the rainfall contribution of MCSs in the USA. Mean mesoscale convective system (MCS)
occurrence over the USA for January-December (panel a), May-August (panel b) and September—April (panel c). Percentage
contribution of MCS rainfall to total rainfall for January-December (panel d), May—August (panel ) and September-April
(panel f). Over the USA, where there is a long record of radar and precipitation data, MCSs are found to be frequent and to
contribute over half of the annual rainfall in the agriculturally productive central USA. Adapted with permission from REF,
© American Meteorological Society.



a Translating cold front pattern
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Surface
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b Quasistationary east-west front pattern

Surface
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Fig. 4| Common environments for MCS formation and maintenance. Synoptic
environments conducive for mesoscale convective system (MCS) formation in a translating
cold front (panel a) and quasistationary east-west front (panel b). Schematicsiillustrate
common MCS types observed in those environments, consistent with the definitions
shown inFIG. 1. Solid black lines indicate a 500-hPa geopotential height contour. Red lines
with half-circles, blue lines with triangles, and alternating patterns represent warm, cold
and stationary surface fronts, respectively. MCSs form in environments where the required
ingredients of moisture, instability, lift and vertical wind shear are brought together;

these two examples highlight two such common regimes in mid-latitudes. Adapted with
permission from REF”', © American Meteorological Society.
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Fig. 5| Conceptual model of a squall line. The vertical cross section is oriented perpendicular to the convective line,
with a trailing stratiform region. The green shading indicates regions where radar echo is present (that is, where precipitation-
sized hydrometeors are observed), with yellow and orange representing stronger radar echoes. Pressure minima and
maxima are represented by ‘L’ and ‘H’, respectively. The height of the melting level is located just above that of the radar
bright band, depicted by the black star and dashed blue arrows. Red arrows indicate the airflow within the mesoscale
convective system, including ascending flow from front to rear and descent in arear-inflow jet. Adapted with permission

from REF*’, © American Meteorological Society.
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Fig. 6 | Derecho impacts. Two-hourly radar continuity map from 1600 UTC 29 June to 0400 UTC 30 June 2012 (panel a).

Storm Prediction Center severe wind reports for the 29-30 June 2012 progressive derecho (panel b). Note that many

of the wind speeds contained in the Storm Prediction Center data are estimated. Long-lived bow echoes are capable of

producing broad swaths of damaging winds, known as derechos. This event resulted in 22 fatalities and millions of power

outages. Radar data in panel a from GridRad'*". Adapted with permission from REF.'*°, © American Meteorological Society. 18 of 48



Table 1 | Summary of changes in MCS properties with warming

Variable Sign of change
MCS characteristics and hazards

Rainfall (rate and volume) Increase
Severe winds Uncertain®
Speed of motion Increase
Organization Uncertain®
Size Increase
Frequency Increase
MCS environments

Atmospheric moisture Increase
Atmospheric instability Increase
Convective inhibition Increase
Vertical wind shear Uncertain®
Frequency of environments Increase

supportive of MCSs

Confidence?

High

Low

Medium

Low

High
High
Medium

Low

Refs

16-18,119,165,
171,172,185

177

16
16,17,119,173
16,17,119,185

16,165,173

14,15,177-181
14,15,177-181
14,181
15,176,178

15,17,165,
178,181

MCS, mesoscale convective system. *Confidence refers to the convergence of evidence based
on different data sources and lines of inquiry. Confidence is rated as high for results that have
been consistently found across numerous studies with both theoretical and modelling support.
®Uncertainty arises owing to inadequate investigation and, as such, there is no estimate of
confidence. For MCS organization, there is confidence that changes will occur, but there is

uncertainty in what those changes will be, including the sign.
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[(a) Identifies cold cloud systems (CCS) at each time step i (b) Links CCS continuously if area overlap >
A 50% between two consecutive time steps
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Figure 1. Schematic flowchart of MCS identification using collocated satellite infrared brightness temperature (T,) and precipitation observations in this
study. (a) Identification of cold cloud system (CCS) based on T}, signatures, (b) tracking of CCS between two consecutive times, (c) linking all consecutive

times to produce tracks, (d) matches tracked CCS with associated precipitation feature (PF), and (e) identification of MCS based on PF characteristics. The
yellow shading in (e) denotes the mesoscale period as defined by CCS > 40,000 km?, with a PF major axis length larger than 100 km for longer than four
continuous hours. During this period, the PF area, mean rain rate, and rain rate skewness must exceed the thresholds denoted by the magenta dash lines, and
the heavy rain volume ratio during this period must be larger than X% (a function of lifetime, see Figure 3) to qualify as an MCS. See text for more details. MCS,
Mesoscale convective system.
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Figure 2. Example of a tracked MCS over the US Great Plains depicted by NEXRAD radar network and GPM IMERG observations. (a) Snapshots of NEXRAD
radar reflectivity at 2-km MSL during various MCS lifecycle stages, (b) similar to (a) except for IMERG instantaneous rain rate, (c) Stage IV accumulated
precipitation for the tracked MCS, and (d) same as (c) except for IMERG accumulated precipitation. GPM, Global Precipitation Measurement; IMERG,
Integrated Multi-satellitE Retrievals for GPM; MCS, mesoscale convective system.
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Figure 4. Comparison of the spatial distribution of observed warm season (March-August) MCSs tracked by NEXRAD radar data set (top row) and GPM
IMERG data set (bottom row) for 2014-2016. (a, d) Number of MCSs, (b, €) MCS precipitation amount, and (c, f) MCS precipitation percentage to total
precipitation. The number of MCSs in (a, d) is calculated by adding each swath of an MCS PF during its lifetime (counted as one sample over each grid point
within the swath) over three warm seasons divided by the total number of seasons (3). GPM, Global Precipitation Measurement; IMERG, Integrated Multi-
satellitE Retrievals for GPM; MCS, mesoscale convective system.
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Figure 5. Comparison of MCS statistics over Central United States tracked by NEXRAD radar data set and GPM
IMERG data set during 2014-2016. (a) Monthly average number of MCS (bars) and standard deviation (error bars),
probability density function (PDF) of MCS properties are shown in (b-g) for MAM (left column), and JJA (right
column), respectively. (b, c) MCS lifetime, (d, e) MCS PF diameter, (f, g) MCS PF mean rain rate. The region of
comparison is shown as the red box in the inset of (a). GPM, Global Precipitation Measurement; IMERG, Integrated
Multi-satellitE Retrievals for GPM; MCS, mesoscale convective system; PF, precipitation feature.
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Figure 7. Example snapshot of tracked MCSs over the Maritime Continent at 10:30 UTC on January 21, 2019. (a) Infrared brightness temperature, (b) GPM
IMERG precipitation. The magenta contours in (a) and the color shadings behind large clusters of PFs in (b) denote each tracked MCS. Weak rain rates

<2 mm h™" in (b) are excluded for clarity. Animation for this day is provided in the Supporting Information. GPM, Global Precipitation Measurement; IMERG,
Integrated Multi-satellitE Retrievals for GPM; MCS, mesoscale convective system; PF, precipitation feature.
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Figure 9. Comparisons of the joint PDF of PF parameters between MCSs defined by the IR-only method (left column)
and the new IR + PF method (right column) over Central Asia region (28°N-60°N, 50°E-120°E) for all seasons during
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are marked in black boxes, see discussions in the text. In (c), boxes are the interquartile range, horizontal bars are median values, circles are mean values, and
whiskers denote 5th and 95th percentile values. The two thick lines in (c¢) are the number of MCS per latitude bin. MCS, mesoscale convective system; PF,
precipitation feature.
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Figure 1 | Springtime mesoscale convective systems rainfall climatology and trends. Mesoscale convective system (MCS) (@) mean total rainfall

and (b) total rainfall trend from 1979 to 2014. Total rainfall shown is the accumulated MCS rainfall during April-June divided by the total number of days
(91). Only trends with statistical significance above 95% using a two-tailed Student t-test are shown. Data within the magenta boxes are used to
calculate the trends in Fig. 2.
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Figure 2 | Time series and linear trends of precipitation in the Central United States. Linear trends of April-June (a) total precipitation, (b) mesoscale
convective system (MCS) precipitation, (¢) non-MCS precipitation, (d) MCS lifetime, (e) MCS precipitation frequency and (f) non-MCS precipitation
frequency. Precipitation frequency is calculated on the NASA North American Land Data Assimilation System (NLDAS) native grid-scale by dividing the
number of hours of MCS or non-MCS precipitation (hours with rain-rate >1mmh~1) by the total number of hours in each season. Results are calculated
within the area of the magenta boxes in Fig. 1. Green boxes show the area between the 25th and 75th percentiles, whiskers denote the 5th and 95th
percentiles. Mean values are the black lines with solid circles while regression fit lines to the mean values are the magenta (1979-2014 period) and blue
(1997-2014 period) lines. The time period before incorporation of the national radar network data in NLDAS is shaded in gray. Linear trends normalized by
the 36-year mean are provided for the entire period (1979-2014) and for the radar period (1997-2014) in the legend of each panel. All trends are
statistically significant at 95% confidence interval with a two-tailed Student t-test, except those marked with *which are only significant at 90%. Those
marked with + + are not significant at 90%. The significance symbols are shown in the legend of each panel.
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Figure 3 | Mesoscale convective system extreme precipitation intensity trends. Trends in mesoscale convective system (MCS) (a) exceedance
frequency of the 95th percentile hourly rain-rate, (b) the actual 95th percentile hourly rain-rate, (¢) probability density function (PDF) of hourly rain-rates
from stations with a significant (Sig.) exceedance frequency trend, and (d) PDF of hourly rain-rates from stations with a significant rain-rate trend. The
trends are obtained using individual hourly rain gauge data (see the text for more details). Circle and diamond symbols in a and b show trends that are
statistically significant at 95% and 90% with a two-tailed Student t-test, respectively. PDFs in € and d are constructed using data from all stations with 90%
statistically significant trends.
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a Surface temperature and MSLP trends

e e -
2 ;A 3 o R ~ 50
lg _ ,:v/‘
8 45| %
= & L
O
&Z, < 40
() s o 3
S e g
.(% g‘ A ‘0-)' 35
- 1Y ~ -0.5 5
?‘ 442}"4{ g 30
' -10 & ,
N 5 7
RN : y-1s 7 2§
-110 -100 -90
c d 550 hPa trends
50 /0
&= e Y
|°’ 45 2
~ 2
—_ 8 -
£ z 40 -
[} R L )
- ’/“
i = 0
'g X o 35 k=
| 2 Pj
2
2 30 g
2] -
25 [ b o
A D A
-110 -10 -90 -80 -70 -110 -100 -90
Longitude (°E) Longitude (°E)

Figure 4 | Large-scale environment climatology and trends during occurrence of high-precipitation mesoscale convective systems. (a) Surface

temperature (shaded) and mean sea level pressure (MSLP) trends (MSLP contours in 0.1hPa per decade intervals, purple/yellow contours denote positive/
negative MSLP trends), (b) surface specific humidity trends (shaded), (¢) 850 hPa mean specific humidity (shaded), geopotential height (contours, in 10 m
intervals), and wind (arrows), and (d) 850 hPa trends in specific humidity (shaded), geopotential height (contours, in 1m per decade intervals, red/blue
contours denote positive/negative geopotential height trends), and wind (arrows, statistically significant at 95%). Grid points with a statistical significance
exceeding the 95% confidence interval are marked by (a) pink hashes for temperature and blue hashes for MSLP, (b,d) purple hashes for specific humidity.

Areas with mean surface pressure below 850 hPa are masked out in ¢ and d.
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Figure 1 | Trends in MCS and rainfall
characteristics across the Sahel. a, b, Annual
rainfall (a), and contribution of extreme events
to annual rainfall (b), as measured by a daily
rain-gauge network. Red lines indicate five-year
running means. ¢, d, Regional MCS frequency

at 1800 utc at different temperature thresholds,
derived directly from measurements onboard the
Meteosat First Generation (MFG; 4 symbols)
and Meteosat Second Generation (MSG; O
symbols) geostationary satellites. The cross-
calibrated GridSat version of these data is

shown as a solid line. Dotted lines denote trends.
e, Significant trends (P < 0.05) in MCS cloud
cover at 1800 uTc (using a temperature threshold
of —70°C). Trends are expressed as a percentage
change per decade, relative to the 35-year mean
(contours). The red and purple rectangles denote
the domains used in a, b and ¢, d, respectively.



Table 1 | Linear correlation statistics for 24-hour mean MCS
frequencies at different temperature thresholds

Correlation coefficient (P value)

Temperature

threshold (°C) Linear trend Sahel rain Global temperature
—40 0.41 (0.007) 0.88 (<0.00001) 0.37(0.0162)
—60 0.77 (<0.00001) 0.83(0.00015) 0.77 (<0.00001)
—7/0 0.87 (<0.00001) 0.65 (0.00002) 0.82 (<0.00001)
—75 0.88 (<0.00001) 0.56(0.00036) 0.80 (<0.00001)

Global land mean temperatures (shown in Extended Fig. 1¢) are computed from JJAS averages.



Figure 2 | Temperature trends (for
June to September) in observations
and models. a-d, Trends (shown

as change in temperature (°C) per
decade) are derived from: a, synoptic
stations; b, ERA-Interim reanalysis;
¢, lower tropospheric temperature
derived from microwave sounding
data; and d, CMIP5-ensemble-based
mean for historical runs. e, The
meridional temperature gradient
(20° N minus 10° N; average over
15°W to 15° E) from the CMIP5
historical (red), RCP4.5 (green)

and RCP8.5 (purple) ensembles
(relative to 1961-1990; shading
denotes the standard deviation for
each ensemble). Temperatures were
taken at a height of 2 metres, except
in panel ¢, which samples the lower
troposphere. Trends are computed
for the period 1982-2015, except in
panel d, which covers 1976-2005.
Significant positive and negative
trends (P < 0.05) are denoted by solid
black circles (a), or lie within blue
contours (b, ). The rectangles mark
the region of the Sahel that was used
for computing MCS statistics.
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Figure 3 | Evolution of observed precipitable water, measured at GPS at P <0.05 (or P<0.01). b, Evolution of precipitable-water anomalies
stations. a, Composite mean precipitable water (mm) associated with sampled from events in the lower (blue) and upper (red) quartiles of
the passage (at 0 h) of 496 Sahelian MCSs. Small (or large) circles denote MCS temperature. Circles denote times when the two time series differ
times when precipitable water correlates significantly with MCS intensity significantly (P < 0.05).
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Key Points:

Mesoscale convective systems
(MCSs) have become more frequent
and intense in the East Asian rainband
over the past two decades

The significant increase of MCS
precipitation accounted for three
quarters of the total rainfall increase
during 2000-2021

The increase of atmospheric total
column water vapor, mainly driven by
anthropogenic forcing, leads to more
favorable environments for MCSs

Intensification of Mesoscale Convective Systems in the East
Asian Rainband Over the Past Two Decades
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Figure 1. Mesoscale convective systems (MCSs) contributed the majority of the increasing trend of total precipitation in early summer over East Asia during the

past two decades (from 2000 to 2021). (a) Early-summer MCS precipitation climatology (unit: mm day~"). (b) Early-summer MCS precipitation anomalies in 2020
(unit: mm day~"). (¢) The MCS precipitation trend during the past two decades (unit: mm day~' decade™"). (d) The same as (c), but for the total precipitation trend.
Grid points with a statistical significance exceeding the 95% confidence level (with a two-tailed Student's #-test) are marked by yellow diagonal lines. The red contour
indicates the Tibetan Plateau (the topography exceeds 2,700 m). The blue boxes indicate the target domain (the East Asian rainband). where the statistical analyses have

been performed.
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(b) Daily MCS precipitation in Early-Summer
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(a) Time series of MCS and Total precipitation (2000-2021)
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Figure 2. Time series and linear trends of MCS and total precipitation, and
daily mean MCS precipitation within each early-summer season over the East
Asian rainband. (a) Time series of early-summer MCS (blue) and total (black)
precipitation (unit: mm day ™), and linear trends of MCS (blue dashed line)
and total precipitation (black dashed line; both statistically significant at 99%
with two-tailed Student's z-tests) of early summer (unit: mm day~! decade™).
Here the gray/blue shadings represent the +0.5 standard deviations of the
daily total/MCS precipitation in each early-summer. (b) Daily mean MCS
precipitation (unit: mm day~!) within each early-summer season during the
past two decades (2000-2021).



(a) Frequency-Intensity structure of Hourly MCS Precipitation

10?
10" = ——2020-2021
] ~———2015-2019
. . —2010-2014
2 10° — ——2005-2009
> ——2000-2004
&
% |
-1
& 107 3
102 —
el e o s B 1 [ [ e s s S )
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Intensity (mm h™)
(b) Linear trend of the accumu. precip. induced by MCS (c) Linear trend of the average individual MCS

©
o
|

90

60 60

30

I T e e W B
|

Y Y |

1

&
S
|

Distance from system centre [km]
o

Distance from system centre [km]
o

o
S
!

)
©
S
L

rrrrrr1rrorrrrrrrirrirorT rrrr1rrr1rr 717171 1rrrr1riTTTd

90 60 -30 0 30 60 90 90 60 -30 0 30 60 90
Distance from system centre [km] Distance from system centre [km]
e o i ————— g
-700 -500 -300 -200 -100 -50 0 50 100 200 300 500 700 -05 04 -03 -02 -0.1-0.05 0 0.05 01 02 03 04 05

Figure 3. Probability density function of MCS hourly precipitation, and linear trends of the accumulated amount and the composited precipitation averages

according to the location of the MCS precipitation center. (a) Frequency-Intensity structure of MCS hourly precipitation over the East Asian rainband. Linear trends

of the (b) composited accumulated rainfall amount (unit: mm decade™") produced by all MCS and (c¢) hourly precipitation averages of each individual MCS (unit:

mm h~' decade™") in each early-summer season from 2000 to 2021. Grid points with a statistical significance exceeding the 95% confidence level are marked by yellow
diagonal lines, with two-tailed Student's -tests.



(a) Circulations Anomalies when MCS initiates
50N !

40N

30N -

20N

,,,,,

10N

i 30N

— 20N

g o

90E 100E 110E 120E 130E 140E 150E

160E

(b) Trend of background circulations in early-summer

| L

1

........
........

1 1
= s-?- . At

4’//-;‘,114
. A O i B
£ 2 e Sr LA

PR

-----

90E 100E 110E

120E

130E  140E

150E  160E

—E ] | I T I I [T —
-0.25 -0.2 -0.15 -0.1 -0.05-0.02 0 0.02 0.05 0.1 0.15 0.2 0.25

—~——=— ] I I I I I I [ T —
-0.25 0.2 -0.15 -0.1 -0.05-0.02 0 0.02 0.05 0.1 0.15 0.2 0.25

(c) Time series of MCS precipitation and TCWV
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Figure 4. Large-scale environment anomalies when MCSs initiate over the East Asian rainband and changes of atmospheric circulations in the early-summer

season during the last two decades. (a) The composited circulation anomalies when MCSs initiate compared to the early-summer climatology. The integrated water
vapor transport and its convergence are indicated by the vectors (unit: kg m~' s7') and shadings (unit: 107* kg m™2 s™'), respectively. (b) The linear trends of the
early-summer mean integrated water vapor transport (unit: kg m~' s~! decade™") and its convergence (unit: 10~* kg m~2 s~! decade™"). Grid points with a statistical
significance exceeding the 95% confidence level (with two-tailed Student's 7-tests) are marked by yellow diagonal lines. The red contour indicates the Tibetan Plateau
(the topography exceeds 2700 m). (c) Time series and linear trends of TCWV (unit: kg m~?) in ERAS5 reanalysis (red) and CMIP6 multi-model ensemble mean (MME;
blue). and MCS precipitation (unit: mm day~": black) over the East Asian rainband (indicated by the blue box). The linear trends of TCWV and MCS precipitation

are all statistically significant at 99% with two-tailed Student's t-tests. Here the gray/red bars represent the +0.5 standard deviation of the daily precipitation/TCWV in
each early summer. The blue bars indicate the +£0.5 standard deviation of the 25 CMIP6 models to represent the inter-model spread. (d) The relationship between the
early-summer mean TCWV over the East Asian rainband (unit: kg m~2) and the number of similar hourly TCWV patterns in each year during 2000-2021.



