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3D momentum equations reads as follows

Making Boussinesq assumption 𝜌!=const.

Consider a steady solution with all varable u only depending on 𝜓 and z

上节课回顾
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Ertel PV theorem

Geophysical Fluid Dynamics by Pedlosky (1986) 

Raymond and Jiang 
(1990)

Any difference from QG 
theory?

请参考Raymond and Jiang 
(1990)

⻅板书！

上节课回顾
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Pseudo-global warming (PGW) 
approach

Schar et al. (1996); Sato et al. (2007) ...

上节课回顾
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• Tornado
• Straight Wind
• Hail
• Flash flood

Chapter 5  
Hazards associated with DMC
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What is tornado?

A rotating column of air, 
in contact with the 
surface, pendant from 
a cumuliform cloud, and 
often visible as a funnel 
cloud and/or circulating 
debris/dust at the ground 
(AMS 2015).
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龙卷视频:派比安台风龙卷

2024/12/5 11

2006年8月4日，受
“派比安”台风外围
环流的影响,两股威力
超强的龙卷风袭击广
东4个市（区）。其中
一股龙卷风上午从南
海西樵镇崇南村向丹
灶镇方向扫过，波及
途经的8个村委会并吹
向三水白坭镇；另一
股龙卷风则在下午3时
30分前后袭击南海大
沥镇。
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龙卷位置：
龙眼博澳城
（网络视频）
约15:30 BJT

龙卷视频：彩虹台风龙卷
摄像位置
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龙卷视频：彩虹台风龙卷
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Video

开心美食
餐厅监控

龙卷视频：彩虹台风龙卷
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道路摄像头

15

龙卷视频：彩虹台风龙卷
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龙卷视频：赤峰冷涡龙卷
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龙卷视频：阜宁龙卷风
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龙卷视频：开原龙卷

2019年7.3辽宁开原EF4龙卷
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龙卷灾害等级：F等级

• Wind speed: usually < 50 m/s ，EF4 or EF5 may > 75 m/s
1%  of total tornadoes account for  70% fatalities

（1971）
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（WSEC 2006）

http://www.spc.noaa.gov/faq/tornado/ef-ttu.pdf

Enhanced Fujita  (EF) scale； 2007年2月1日

龙卷灾害等级：EF等级
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龙卷定级
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EF等级和F等级的对应关系 

（Meng and Yao 2014)
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General characteristics

• Vertical vorticity: 1 /s, mostly cyclonic 
• Diameters : ~ 100 m
• Lift span: 10 min-1 h
• Environmental  system
– most significant tornadoes (F2 or above) and all 

violent tornadoes are associated with supercell storms.
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Spatial distribution

Southern 
Brazil

Southeastern 
China

Central 
US
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我国龙卷分布 (1948-2012)

(Chen et al. 2017, International Journal of Climatology)
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我国龙卷分布 (1948-2012)
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我国龙卷分布 (1948-2012)
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我国龙卷分布 (1948-2012)
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Tentative location of tornadoes 

T
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Tornado Genesis (1)
• It needs large vertical vorticity arises at the ground

A downdraft 
is involved 
in the tilting 
process, 
redistribute 
the vertical 
vorticity
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Trajectories in the RFD region
(dual-Doppler observations of supercell 
thunderstorms,);

Observational facts

Brandes [1978]
Wicker and Wilhelmson [1995] from Xue [2004]; courtesy of Ming Xue).

Backward trajectories from the near-
ground vertical vorticity maximum 

a three-dimensional perspective from 
the southeast of trajectories entering a 
tornado that developed within a 
supercell simulation
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Arches of baroclinically generated vortex line

Dual-Doppler-derived storm relative wind 
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Arching by pure baroclinic process
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Tornado Genesis (2)
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Non-mesocyclonic tornadoes

Squall line tornadoes
• Often associated with meso-g-scale vortices 

(mesovortcies) 
• The squall line tornadoes are generally weak. 

EF2 above is very rare. 
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Tornado forecasting

• The most fruitful strategy: combine radar 
observation and near-storm environment

• 25% of radar-detected mesocyclone are 
associated with tornadoes

• The strongest mesoscyclone are not 
necessarily associated with tornadoes
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Tornadic or nontornadic supercell?

• Boundary layer RH
• Low-level vertical shear
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• Cold pool intensity 

Tornadic or nontornadic supercell?
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Meso-a scale favorable condition

• Boundary layer RH  & Low-level vertical shear
– Define days of breakout of tornadoes 

• Randomness 
– Meso-b-scale enhancement of boundary layer RH and low-

level vertical shear
Outflow boundary, warm front, sea breeze etc.
• Density gradient generate horizontal vorticity, thus augment the 

environmental vertical shear
• Localized convergence deepens the moist layer

• Storm-Boundary interaction 
– Not all these interactions are favorable 
– Whether the new airmass that the storm encounters has 

larger CAPE, smaller CIN
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Squall line tornado forecasting
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Squall line tornado forecasting
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Tornado structure
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Tornado structure

• Based on photogrametric studies, laboratory 
experiments and numerical simulations  
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Flow regions: Outer region (I)

Inward spiraling air
Conserve angular momentum
Spins faster as it approaches the tornado axis
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Flow regions: Core region (II)

From the axis to the maximum wind
Contains a funnel cloud, a column of dust and 

debris from the ground
Cyclostrophic  balance
Almost no entrainment
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Flow regions: Corner (III)

Flow turns upward from a primarily horizontal 
direction
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Flow regions: Boundary layer (IV)

10-100m deep
Turbulent
Friction precludes cyclostrophic balance, thus 

inflow is produced
Intense wind speed due to the inflow and 

convergence of angular momentum
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Flow regions: Rotating updraft (V)

Large-scale parent updraft situated above the 
tornado
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Wind profiles: Rankine vortex

vmax : the maximum tangential wind
rmax : the radius of vmax 

• Within rmax  : constant angular velocity v/r
• Outside rmax : constant  angular momentum vr

• Cyclostrophic balance, applicable above the 
PBL
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Pressure profiles

Cyclostrophic balance in natural coordinates:

Assume P’ is only a function of r, integrate above 
equation from r to ¥, we have 
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Assume  p’¥=0.
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only enough to lower
the cloud base by 
approximately 60m.

the cloud base lowers 
by ∼1000 m, which
would likely be near 
the ground
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Swirl ratio

• V0 is the tangential velocity at ro.
• W0 is the mean vertical velocity at the top of 

the chamber 
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Tornado structure
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(d) two-celled vortex

(a) Weak Swirl ratio
—boundary layer 
separates and flow 
passes around the 
lower corner; 

(b) one-celled vortex; 

(c) one-celled
vortex over the lower 
portion, two-celled 
vortex over the 
upper portion, 
separated by vortex 
breakdown 
                               

(e) multiple vortices.

(S<1)

(S>2)
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Numerical simulation 



68 of 116

Multiple vortex



69 of 116

• Tornado
• Straight Wind
• Hail
• Flash flood

Chapter 5  
Hazards associated with DMC
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Nontornadic  damaging straight line winds

• Almost always associated with precipitation cooled 
outflow 
– Exception: inflow of supercell

• Produced by
– Meso-g-scale downdraft (downburst), highly divergent 

• Intense downdraft  
• RIJ: lesser downdraft that carrys large momentum from aloft

– Meso-b-scale cold pools associated with horizontal 
pressure gradient large enough to produce damaging 
winds in the absence of strong downdraft. (merged 
outflow)

– Vortices formed at the outflow boundary

(Wind> 26 m/s)
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Damaging winds: (1) due to downdrafts

Downburst: defined to have 
Horizontal dimensions less 
than 10 km. 

Macroburst:
  Larger than 4 km, 5-30 min
Microburst: 
  Less than 4 km, 2-5min
     Very dangerous for airplane

Fujita 1985
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Subclasses of microburst

• Wet microburst: Extensive precipitation reach 
the ground. 
– Most common
– Negative buoyancy is generated by hydrometeor 

loading, evaporation, and hail melting.
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Subclasses of microbursts

• Dry microburst: 
precipitation fails to 
reach the ground. 
– Negative buoyancy is 

generated by evaporation
– Deep boundary layer and 

high cloud base  
– Virga can be observed 

under the spawned 
convection 
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Microburst
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Cross-section of a microburst

Fujita (1978)
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Streamline analysis of a series of downbursts and microbursts
                                                   on 30 September 1977. (From Fujita [1978].)
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东方之星倾覆
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东方之星倾覆
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东方之星倾覆地点附近的为下击暴流

200×70 m2
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The development of downdraft

Dominant in downburst caseSignificant in the 
environment 
with high vertical 
shear
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Pressure perturbation

At surface beneath the downburst

v is the downdraft velocity a few km above the surface at 
a height where P’ is small.        is the mean air density in 
this layer.

Limited by the estimation difficulty in DCAPE

Bernoulli equation:

(at ~ 2km)
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Buoyancy B

• Latent cooling
• Hydrometeor loading

𝐵
𝑔
≈
𝜃	
"

%𝜃	
+ 0.61𝑞#′	 −

c#
c$
𝑝"

�̅�
− 𝑞%



83 of 116

Latent cooling

• Evaporation of liquid water
– Below melting level
– Dry PBL, mid-level entrainment
– Although dryness is important in downdraft 

initiation, but the increase of dryness does not 
necessarily indicate the intensification of the 
downdraft
• Dry condition may not initially produce strong updraft 

and much rainfall to evaporate 
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Latent cooling

• Melting of ice
– Below melting level 
– Increases as environmental RH increases

• Hail stones maintains a higher Tw due to less evaporation
• Zero Tw level is higher in moister environment

• Sublimation of ice 
– Confined on higher altitudes
– Increases as environmental RH decreases
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Latent cooling

The potential temperature change of an air parcel at 
constant pressure

l : specific latent heat
rh : hydrometeor mass that is either evaporated, melted, or 
sublimated.

θ cools by approximately 2.5/0.3/2.8 K for every 1 g kg−1 of 
hydrometeor mass that is evaporated/melted/sublimated.
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MCS simulations
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Buoyancy B

• Latent cooling
• Hydrometeor loading
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Hydrometeor loading

• For rh = 10 g kg−1, the contribution to B is the same 
as from a −3 K potential temperature perturbation.

• Crucial in the initiation of downdraft 
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Damaging winds: (2) in the absence of a strong downdrafts

• Very common in MCSs
• Generated by 
– Strong pressure gradient in the cold pool
– Descending of rear-inflow-jet to the surface
– Meso-g-scale vorticies 
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RIJ
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Mesovorticies
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Straight wind: Derecho

A widespread convectively induced straight-line 
windstorm. 
• major axis > 400 km
• wind > 26 m/s
• time~ 10 h
• Specifically, the term is defined as any family of 
downburst clusters produced by an extratropical 
mesoscale convective system (bow echoes). 

http://amsglossary.allenpress.com/glossary/search?id=straight-line-wind1
http://amsglossary.allenpress.com/glossary/search?id=straight-line-wind1
http://amsglossary.allenpress.com/glossary/search?id=downburst1
http://amsglossary.allenpress.com/glossary/search?id=mesoscale-convective-system1
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Example Guastini, C. T., and L. F. Bosart, 2016: Analysis of a Progressive Derecho Climatology and 
Associated Formation Environments. Mon. Wea. Rev., 144, 1363–
1382, https://doi.org/10.1175/MWR-D-15-0256.1.

https://doi.org/10.1175/MWR-D-15-0256.1
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U.S. 1996-2013
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不同季节的分布
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For isolated cell
• Identifying environments conducive to the 

formation of intense downdraft

Forecasting

For MCSs
• Anticipating the formation of long-lived MCSs 
• Cold pool
• Rear inflow jet descending
• Mesovorticies

For Supercells:  RFD
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• Tornado
• Straight Wind
• Hail
• Flash flood

Chapter 5  
Hazards associated with DMC



98 of 116

Hail formation and growth

• Form by collection of supercooled cloud 
droplets and raindrops
– Most hydrometeors remain supercooled liquid
– Freezing nuclei form a few ice particles in the 

updraft
– Ice particle starts to descend after 5-10 min 

growth by vapor deposition
– The supercooled liquid freezes immediately upon 

contacting and form spherical graupel (with 
diameters of a few millimeters )
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Hail formation and growth

– Formation of low-density ice layer 
• The growing ice particles become larger and falls faster, 

sweeping out more supercooled liquid
– Formation of clear ice layer
• Once the growth rate becomes large, the hailstone 

temperature may be  above zero, owing to the 
increased energy transferred to the ice in the fusion 
process
• The supercooled cloud droplets may not freezes 

immediately upon contact, but flow across the surface 
and fill in the gaps and thus increases the hail density, 
and form a layer of clear ice. 
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Hail size
• The final size of the stone is decided by 
– Liquid water concentration
– The time that the hail can reside in the 

region of high supercooled liquid water 
content
• Updraft strength
• Hail fall speed
• Times of excursions through the updraft  

• The size of hail that reaches the surface 
– Melting amount of hail  

• Increase: Falls in updraft with a high freezing 
level  due to more moist air 

• Decrease: outside the cloud （dryer, lower  
wet-bulb-zero level ), or in downdraft (fall 
faster)
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Ideal condition for hail growth

• Hailstone fall speed matches the updraft velocity 
when the ice particle enters the portion of the 
updraft where the supercooled liquid water 
concentration is large
– May grow to a diameter of 10 cm or larger
– Falling hail approach the core of a tilted updraft, help 

to make the fall speed matched by the updraft
• If the updraft is too stronger, ice particles will be  

ejected to the anvil
• If the updraft is too weaker, ice particles will just 

falls out prematurely
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Forecasting the hail size that reaches the ground 

• The maximum updraft speed
– CAPE and shear

• The degree of melting
– Level of Zero Tw

• Large CAPE and low Level of Zero Tw are usually used to 
forecast large hail

• No observed apparent correlation between the 
hail size and CAPE or level of zero Tw
– CAPE is not a good indicator for updraft when the 

parcel theory is not well satisfied 



103 of 116

Radar Signature of Hail

三体散射
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• Tornado
• Straight Wind
• Hail
• Flash flood

Chapter 5  
Hazards associated with DMC
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Flash floods

• The deadliest hazard associated with 
convection worldwide

• Its nature is complicated by the interaction of 
meteorology and hydrology

R : the average rainfall rate 
D : the duration of the rainfall

The total accumulation of precipitation
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Duration

Backbuilding MCS
• Rainfall duration is maximized when cell 

motion is opposed by the propagation of 
the convective system

Echo train
• High rain rate cell moves repeatedly  over 

the same area
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Duration

• MCS organization
LS MCSs are more prone to produce extreme rainfall 
accumulation, it moves slower than PS and TS MCSs 
– LS tends to have the opposite direction between cell 

motion and propagation
– TS tends to have the same direction between cell 

motion and propagation
• Convection structure
– Large stratiform precipitation region poses a greater 

threat



108 of 116

Rain rate

Instantaneous rain rate 

E : precipitation efficiency , the ratio of the measured 
precipitation rate at the ground to the water vapor flux  
through the cloud base
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E vs. vertical wind shear

Marwitz [1972]
and Browning [1977]

The determination of E is error-prone 



110 of 116

E vs. vertical wind shear

Weisman and Klemp (1982)

They used a very simple warm-rain microphysics parameterization

Low-CAPE 

High-CAPE 
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E vs. vertical wind shear

• Detrimental: Entrainment tends to increase 
with increased shear 
– The precipitation falls farther from the updraft, 

more entrainment, more evaporation

• Beneficial: convection tends to be better 
organized or long-lived in stronger vertical 
shear environment
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E vs. RH

• E increases if RH increases
– Less evaporation

• Isolated updraft has less E than those 
embedded in a larger cloud system due to 
more entrainment
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Forecasting E is tricky

• It involved microphysical process
– Depth of cloud layer below and above freezing 

level
• Warm rain process are more threatening

– Cell merger increases E
• Less entrainment
• Larger collision and coalescence rate due to the 

possible merging of two different drop-size distribution
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Ingredients of flash flood from DMC

• Slow storm motion  (D)
• Large low-level water vapor concentration in 

the presence of strong updraft (R)
• Large environmental relative humidity (E)
• A significant cloud depth below the freezing 

level  (E)
• Weak vertical shear (E)
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Ingredients of flash flood from DMC

• In DMC, E is generally high, mesoscale Effects 
could make things worse
– Cell merger
– Backbuilding convection along slow-moving or 

stalled fronts
– Backbuilding due to lifting by a convectively 

generated gravity wave
– Topographic effects 
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