模式结果对初始条件的敏感性

上节课回顾

Instability (growth of small perturbations)

Source: Dr. David Randall, CSU

Eventually, after time has passed, it is inevitable that even the very largest scales in a model will be dominated by great uncertainty.

Figure 8.9: Sketch illustrating the role of instability in leading to error growth, and of nonlinearity in leading to the movement of error from small scales to larger scales.

Any forecasting method is subject to this (not just numerical prediction) because the behavior of the system is heavily dependent on the initial conditions!

there is a sensitive dependence on initial conditions

$$\frac{\partial A}{\partial t} = -c \frac{\partial A}{\partial x}$$

Upstream scheme:

$$\frac{A(x,t+1) - A(x,t)}{\Delta t} = -c \frac{A(x,t) - A(x-1,t)}{\Delta x}$$
$$A(x,t+1) = A(x,t) - c \frac{\Delta t}{\Delta x} [A(x,t) - A(x-1,t)]$$

模式参数设定

Courant Number $c \frac{\Delta t}{\Delta x}$

Criteria of stability
$$\left| c \frac{\Delta t}{\Delta x} \right| \le 1$$

Current trends in cloud models:

Higher and higher resolution

 Studies include more simulations (no longer in the era of "one production run")

 Ever increasing sophistication of microphysical parameterizations

Increasing use of ensembles

Increasing use of dynamical data assimilation techniques

•Operationally useful NWP that resolves smaller scale convective processes

强对流天气的可预报性

大气可预报性

• 指可以提前多长时间做出准确预报

$$\alpha(t) = \alpha(0) + t \times F$$

$$\frac{\pi}{2} \pi \pi \theta$$

$$\frac{\pi}{2} \pi \theta$$

误差来源:初始和模式误差

- 观测时空密度和类别、资料同化算法
- 模式的物理过程描述

天气预报对误差的敏感性

- 初始很小的误差会造成一段时间后较大的误差
- 导致天气预报存在预报时效上限

个例1: 飑线

The predictability of the squall line (Wu, Meng, Yan, AAS, 2012)

- Sensitivity to the model error
 - Physical parameterization
 - Grid size
- Sensitivity to the initial error
- Possible way to improve the forecast skill

Sensitivity to physical parameterization

Expt.	(km)	D1 and D2	schemes	schemes	schemes
C4.5	4.5	Grell-Devenyi for D1 & D2	WSM6	YSU	rrtm
KFcum	4.5	Kain-Fritsch for D1 & D2	WSM6	YSU	rrtm
THmps	4.5	Grell-Devenyi for D1 & D2	Thompson	YSU	rrtm
MRFpbl	4.5	Grell-Devenyi for D1 & D2	WSM6	MRF	rrtm
EHSlws	4.5	Grell-Devenyi for D1 & D2	WSM6	YSU	EHS forcing

11 of 62

Impact of physical parameterization

Sensitivity to grid size

Sensitivity to initial error

Setup of ensemble forecast

>Initial ensemble : WRF-3DVar

>Ensemble size: 40

>STD: 1K for T, 2m/s for u and v, 0.5g/kg for qv

The CNTL ensemble, reflectivity valid at 24

observed position

B: Got a squall line with a larger location error

C: No squall line formed during the whole forecast

Splitting experiments

$\Delta = \{initial_{good} - initial_{bad}\}/10$

(Melhauser & Zhang 2012)

Sensitivity to the initial error: all variables

Sensitivity to the initial error: different variables

Only UV

Only T

Only Qv

All but Qv

Sensitivity to the initial error: different pairs

Summary

- Model error apparently affect the predictability of the squall line
 - Physical parameterization
 - Grid size
 - Cumulus parameterization
- Initial error apparently affect the predictability of the squall line
 - Linear impact
 - The moisture condition and moist processes played an important role

个例2: 强对流雷暴过程

2013年5月20日穆尔(Moore)强龙卷

造成龙卷的雷暴天气的可预报性

以2013年5月20日美国俄克拉荷马州造成穆尔强龙 卷的雷暴天气过程为基础考察

- 两种常见实际误差来源如何影响其实际可预报性
 - 初始场中天气背景条件的提前或滞后
 - 对流触发的误差
- 微小的初始误差如何影响其本性可预报性
 - 减小初始误差是否能够提高预报技巧
 - 不同尺度中的误差增长特征
 - 导致误差增长的物理过程
- Zhang Y., F. Zhang, D. Stensrud, and Z. Meng*, 2015: Predictability of the Tornadic Thunderstorm Event in Oklahoma on 20 May 2013: Sensitivity of Convection Initiation and Organization to Small Changes in Synoptic Timing and Topographical Forcing, Monthly Weather Review, 143, 2973-2997

生成龙卷的强对流雷暴过程

CDT=UTC-0500

25 of 62

"one-way nested"

数值模式对天气背景条件的模拟

确定性预报控制实验模拟的雷暴

可预报性

Predictability is the degree to which a correct prediction or forecast of a system's state can be made, either qualitatively or quantitatively.

强对流雷暴预警方法的变化

- 现有预警方法: Warn-on-Detection
 - 对流环境的分析、雷达观测(中气旋、勾状回波)
 - 预警时间很难进一步提高
- 探索使用高分辨率集合预报提供灾害天气预警 (Warn-on-Forecast)
- 需要了解中小尺度强对流天气的可预报性

中尺度可预报性的研究进展和局限

- 实际可预报性:当前水平下对天气过程能够准确
 预报的最长时限
 - 多集中于中α和中β尺度
 - TC: Sippel et al. (2008), Zhang et al. (2014), etc.
 - MCS: Melhauser and Zhang (2012), Wu et al. (2013), etc.
 - 中γ尺度(雷暴尺度)多使用理想模式,较少探讨初始场中天气条件的误差如何影响雷暴预报
- 本性可预报性:近乎完美的数值模式和初始场对
 天气过程能够准确预报的最长时限
 - 湿对流系统误差饱和及升尺度增长(Zhang et al. 2007)
 - 有大量的对于TC和MCS的个例研究
 - 鲜有针对强雷暴的工作

实际可预报性

• 时间错位(TIME_SHIFT): 使用1400至1600 UTC每15分钟 的模式输出作为1500 UTC时的初始场,积分至0000 UTC

	D01	D02 & D0)3	D)4	1956~2035		
5月 120	19日	5月20日 1200 UTC	5月2 1500	20日)UTC	龙卷	5月2 0000	21日)UTG

 位置错位(TOPO_SHIFT): 将1500 UTC时初始场的下垫面 地形向西或向东移动0.5°或1.0°,积分至0000 UTC

TIME_SHIFT的模拟结果

天气背景时间对边界层的<mark>调制作</mark>用改变不同模拟的对流条件

TOPO_SHIFT的模拟结果

³⁵ of 62

1500-1800 UTC 0-1-km平均水汽变化TOPO_SHIFT与CNTL之差。

39 of 62

TOPO_SHIFT雷暴相对环境螺旋度(SREH)

动力条件:环境螺旋度

composite reflectivity (contours)

本性可预报性

1700 UTC

	D01			D02 & D03 D04		1956~2035		
5月 120	19日 0 UTC	5月2 1200	0日) UTC	5月2 1500	0日 UTC	龙卷	5月2 0000	21日 0 UTG

- EF_PERT: 在1700 UTC时扰动生成60个集合成员的初始 场,进行6小时集合预报至2300 UTC
- EF_TINY: 将初始扰动缩小至10%, 其余不变
- 1715 UTC时集合发散度统计特征:

		Т (К)	Qv (g/kg)	U (m/s)	V (m/s)
EF_PERT 100%初始扰动	标准偏差	0.066	0.11	0.19	0.20
EF_TINY 10%初始扰动	标准偏差	0.0082	0.014	0.024	0.025

Zhang, Y., Zhang, F., Stensrud, D.J. and Meng, Z., 2016. Intrinsic predictability of the 20 May 2013 tornadic thunderstorm event in Oklahoma at storm scales. *Monthly Weather Review*, *144*(4), pp.1273-1298.

微小初始扰动带来的预报误差

对中气旋位置的概率预报

即使<mark>集合初始扰动减小为10%,</mark>中气旋可能的路径分布依然 没有明显的变化,预报技巧并未明显提高

不同尺度的误差增长过程

- 深湿对流并非误差升尺度增长的必要条件
- 深湿对流会加速和放大这个过程

对两个集合成员的详细分析

对流触发阶段

对流触发阶段

由于小尺度的湍流,对流触发的准确位置无法提前预报

雷暴的组织和合并

60 dBZ 反射率 20 m/s 垂直速度

两个雷暴再合并前的相互位置会影响合并之后新雷暴的发展和维持

- 2013年5月20日发生在美国俄克拉荷马州的强对 流雷暴天气过程的可预报性与尺度有关
 - 准线性对流系统的时间范围的可预报性较强,而单体 雷暴的位置、强度和结构的可预报性有限(3~6小时)
 - 初始条件中天气条件和下垫面地形的误差导致水汽、
 不稳定性、垂直层结等对流条件和平均风场、风切变、
 低层辐合等动力条件的变化,影响对流的触发和组织
 - 湿对流过程和冷池与环境的相互作用会将微小的初始
 误差迅速放大并升尺度增长,使得预报技巧在初始误
 差减小90%的情况下依旧没有显著提高

- 对于数值预报实践的意义
 - 如果对于天气背景的预报发生了时间的误差,以此为基础的模拟对流触发预报要相应地调整触发时间
 - 当模拟对流触发出现位置误差时,简单地将模式模拟的雷暴过程进行平移并不能弥补预报误差
 - 虽然强对流雷暴的本性可预报性极为有限,但是可以 使用集合预报的方法,弥补初始场的不确定性
 - 提供了强对流雷暴预报可能的误差量级

集合预报: 飑线

问题:如何提高飑线的预报技巧?

前人的工作: 大多仅考虑了初始场的不确定 性,物理过程采用单一模型

我们的工作: 考虑物理过程的不确定性

(Wu, Meng, Yan, AAS, 2013)

Impact of using a multi-scheme on the predictability

Mode	l configui	ration of	Multi-sche	me
------	------------	-----------	------------	----

No. of members	No. of members using a	No. of members	No. of members using
using a cumulus	microphysics scheme and the	using the PBL	the longwave scheme
scheme and the	scheme used	scheme and the	and the scheme used
scheme used		scheme used	
13, Kain-Fritsch	4, Lin et al.	1, <mark>YSU</mark> ;2,ETA;1,MRF	3, <mark>rrtm</mark> ;1,cam
	4, Thompson et al.	1,YSU;2,ETA;1,MRF	3,rrtm;1,cam
	5, WSM six-class graupel	2,YSU;2,ETA;1,MRF	3,rrtm;2,cam
13, Betts-Miller	4, Lin et al.	1,YSU;2,ETA;1,MRF	3,rrtm;1,cam
	4, Thompson et al.	1,YSU;2,ETA;1,MRF	3,rrtm;1,cam
	5, WSM six-class graupel	2,YSU;2,ETA;1,MRF	3,rrtm;2,cam
14, Grell-Devenvi	4, Lin et al.	1,YSU;2,ETA;1,MRF	3,rrtm;1,cam
	5, Thompson et al.	2,YSU;2,ETA;1,MRF	3,rrtm;2,cam
	5, WSM six-class graupel	2,YSU;2,ETA;1,MRF	3,rrtm;2,cam

(Wu, Meng, Yan , AAS, 2012) 54 of 62

飑线的可预报性

(Wu, Meng, Yan, AAS, 2013)

Ensemble spread of Multi vs. Single

Summary

- Model error apparently affect the predictability of the squall line
 - Physical parameterization
 - Grid size
 - Cumulus parameterization
- Initial error apparently affect the predictability of the squall line
 - Linear impact
 - The moisture condition and moist processes played an important role
- > Adding physical perturbation helped to improve the forecast skill

集合预报: 台风

集合预报: 平均场+可信度+发生概率

Probability of Precipitation Greater than 6 mm During Period 0Z Day 1 to 0Z Day 2

Probability of Precipitation Greater than 5 mm During Period 0Z Day 2 to 0Z Day 3

Ensemble Tracks of TC(1883) 120h forecast based on 2018112200 UTC tracks: CTRL=red MEAN=green EPS members=blue

Probability that TC(1883) will pass within 120km radius During 120h forecast based on 2018112200 UTC

90 80

70 60

50 40

30

20 10

9 of 62

2017年台风路径预报技巧评估

台风"山竹"的GRAPES 集合预报

本课程期末回顾

WILEY-BLACKWELL

Mesoscale Meteorology in Midlatitudes

Paul Markowski Yvette Richardson

Cloud Dynamics

Second Edition

Robert A. Houze, Jr.

	Contents	
Series	Foreward	xi
Preface		xiii
Acknow	vledoments	XV
List of	Symbols	xvii
PARTI C	Seneral Principles	1
1 What i	s the Mesoscale?	3
1.1	Space and time scales	3
1.2	Dynamical distinctions between the mesoscale and synoptic scale	5
2 Basic	Equations and Tools	11
2.1	Thermodynamics	11
2.2	Mass conservation	16
2.3	Momentum equations	17
2.4	Vorticity and circulation	21
2.5	Pressure perturbations	25
2.6	Hermodynamic diagrams Hodographs	32
3 Mesos	cale Instabilities	41
3.1	Static instability	41
3.2	Centrifugal instability	48
3,3	Inertial instability	49
3,4	Symmetric instability	53
3.5	Shear instability	58
PART II	Lower Tropospheric Mesoscale Phenomena	71
4 The Bo	oundary Laver	73
4.1	The nature of turbulent fluxes	73
4.2	Surface energy budget	82
4.3	Structure and evolution of the boundary layer	83
4.4	Boundary layer convection	88

			CONTENTS	
		4.5	Lake-effect convection	93
		4.6	Urban boundary layers	103
		4.7	The nocturnal low-level wind maximum	105
	5	Air Ma	ss Boundaries	115
		5.1	Synoptic fronts	117
		5.2	Drylines	132
		5.3	Outflow boundaries	140
		5.4	Mesoscale boundaries originating from differential surface heating	149
	6	Mesos	cale Gravity Waves	161
		6.1	Basic wave conventions	161
		6.2	Internal gravity wave dynamics	165
		6.3	Wave reflection	170
		6.4	Critical levels	172
		6.5	Structure and environments of ducted mesoscale	
			gravity waves	173
		6.6	Bores	175
PA		RT III	Deep Moist Convection	181
	7	Conve	ction Initiation	183
		7.1	Requisites for convection initiation and the role	
			of larger scales	183
		1.0	Mesoscate complexities of convection initiation	189
		7.3	Moisture convergence	195
		1.4	Elevated convection	197
	8	Organi	ization of Isolated Convection	201
		8.1	Role of vertical wind shear	201
		8.2	Single-cell convection	206
		8.3	Multicellular convection	209
		8.4	Supercellular convection	213
	9	Mesos	cale Convective Systems	245
		9.1	General characteristics	245
		9.2	Squall line structure	249
		9.3	Squall line maintenance	253
		0.4	Rear inflow and bow echoes	260
		2.4		

10	Hazard	is Associated with Deep Moist Convection	273
	10.1	Tornadoes	273
	10.2	Nontornadic, damaging straight-line winds	292
	10.3	Hailstorms	306
	10.4	Flash floods	309
PA	RT IV	Orographic Mesoscale Phenomena	315
11	Therm	ally Forced Winds in Mountainous Terrain	317
	11.1	Slope winds	317
	11.2	Valley winds	320
12	Mount	ain Waves and Downslope Windstorms	327
	12.1	Internal gravity waves forced by two-dimensional terrain	327
	12.2	Gravity waves forced by isolated peaks	332
	12.3	Downslope windstorms	333
	12.4	Rotors	342
13	Blocki	ng of the Wind by Terrain	343
	13.1	Factors that govern whether air flows over or around a terrain obstacle	343
	13.2	Orographically trapped cold-air surges	346
	13.3	Lee vortices	351
	13.4	Gap flows	358
PA	RTV	Appendix	367
A	Radar	and Its Applications	369
	A.1	Radar basics	369
	A.2	Doppler radar principles	371
	A.3	Applications	374
	Refere	ences	389
	Index		399

Contents						
Dedication	¥.		2.5.	Potential Vorticity	31	
Preface List of Symbols	AIII XV		2.6.	Perturbation Forms of the Equations 2.6.1. Average and Perturbation Forms of the Equation of State and	32	
Des 1				Continuity Equation 2.6.2. Hus Forms and Linearization of the Theorem and	32	
Fundamentals				Water-Continuity Equations 2.6.3. Flux Form and Linearization	32	
1. Toward of Claude in Fastlets				of the Equation of Motion	-13	- 1
1. Types of Clouds in Earth's	1			2.6.4. Eddy Kinetic Energy Equation	33	
Atmosphere	3		2.7.	Oscillations and Waves	33	
1.1. Atmospheric Structure and Scales	3			2.7.1. Buoyancy Oscillations	33	- 1
1.2. Cloud Types Identified Visually	- 4			2.7.2. Gravity Waves	34	- 1
1.2.1. Genera, Species, and Étages	- 4			2.7.3. Inertial Oscillations	35	- 1
1.2.2. Low Clouds	6			2.7.4. Inertio Gravity Waves	36	
1.2.3. Middle Clouds	10		2.8.	Adjustment to Geostrophic and		- 1
1.2.4. High Clouds	12			Gradient Balance	Ho	- 1
1.2.5. Orographic Clouds	11		2.9,	Instabilities	36	- 1
1.2.6. Noctilucent Clouds	16			2.9.1. Buoyark, mertual, and symmetric	14	- 1
1.3. Precipitating Cloud Systems	10			2.0.2 Kohin Molekeler Instability	30	- 1
1.1.1. Mesoscale Connective Systems	17			2.5.2. Kerrin-Heinrick2 Instability 2.6.1. Russiah Rise of Instability	47	- 1
1.3.2. Hopical Cyclones	10		3.36	Representation of Edds Downs	44	- 1
1.3.3. Eduatopical Cyclones	10			2.10.1. K.Theory	44	- 1
1.4. Satellite Cloud Camatology	50			2.10.2. Higher Order Closure	45	- 1
3 Atmorphasic Domamics	35			2.10.1. Large Eddy Simulation	45	- 1
2. Autospheric Dynamics	4.5		2.11	The Planetary Boundary Laver	45	- 1
2.1. The Basic Equations	25			2.11.1. The Ekman Laver	45	- 1
2.1.1. Equation of Motion	25			2.11.2. Boundary-Layer Stability	46	- 1
2.1.2. Equation of State	-25			2.11.3. The Surface Layer	46	- 1
2.1.3. Thermodynamic Equation	25					- 1
2.1.4. Mass Continuity	26	3.	Cle	oud Microphysics	47	- 1
2.1.5. Water Continuity	20			Allowed and a state of the state		- 1
2.1.6. The Full Set of Equations	27		3.1.	All the second s	47	- 1
2.2. Balanced Flow	-27			3.1.1. Nucleation of Litops	40	- 1
2.2.1. Quasgrostrophic Motion	11			3.1.3. Enformation and evaporation	50	- 1
2.2.2. Senageostophic Motors 2.2.3. Conduct Mind Relation	20			3.1.4. Continuous Collection	51	- 1
2.2.3. Gradient With Balance	- 28			1.1.5. Stochastic Collection	52	- 1
2.2.5 Thermal Word	39			3.1.6. Spontaneous and Collisional	2575	- 1
2.2.6 Cerlestrophic Balance	29			Breakup of Drops and Modification		- 1
2.3 Andatic and Rossingto approximations	- 29			of the Stochastic Collection		- 1
see	1.1			Formulation	53	- 1

į.	Non-training of the state			Education Acad Baseleitation	
3	2. Microphysics of Cold Clouds 3.2.1. Homogeneous Nucleation	24	4.7.	from Radar Data	85
	of Ice Particles	54	4.8.	Determining Cloud Morphology	
	3.2.2. Heterogeneous Nucleation			from Radar Data	89
	and Other Processes Forming Small		4.9.	Doppler Radar	89
	Ice Particles in Clouds	55		4.9.1. Radial Velocity	- 90
	3.2.3. Vapor Deposition and Sublimation	57		4.9.2. Velocity and Range Folding	91
	3.2.4. Aggregation and Kiming	58		4.9.3. Vertical Incidence Observations	-91
	3.2.5. Hall	60		4.9.4. Range-Height Data	-92
	3.2.6. Ice Enhancement	61		4.9.5, Velocity-Azimuth Display Method	-92
	3.2.7. Fallspeeds of Ice Particles	62		4.9.6. Multiple Doppler Synthesis	- 94
	1.2.8. Melting	64		4.9.7. Retrieval of Thermodynamic and	
9	3. Types of Microphysical Processes and			Microphysical Variables	95
	Categories of Water Substance in Clouds	65			
3	4. Water-Continuity Equations	67			
- 7	Bin Water-Continuity Models	68	Part I	1	
	3.5.1. General	68	Phene	omena	
	3.5.2. Bin Modeling of Warm Clouds	68			
	3.5.3. Bin Modeling of Cold Clouds	69	5 Cle	uds in Shallow Lavers at Low	
3	6. Bulk Water-Continuity Models	20	Mi	ddle and High Levels	101
	3.6.1. The Classic Kessler Approach to Bulk			aget and right sereis	
	Water-Continuity Modeling of Warm		5.1.	Fog and Stratus Occurring in a Boundary	
	Precipitating Clouds	70		Layer Cooled from Below	101
	3.6.2. Multimoment Bulk Water-Continuity			5.1.1. General Considerations	101
	Modeling of Warm Clouds	72		5.1.2. Turbulent Missing in Fog	102
	3.6.3. Bulk Modeling of Cold Clouds By			5.1.3. Radiation Fog	104
	Extending the Kessler Scheme	74		5.1.4. Arctic Stratus and Stratocumulus	108
3	7. Water-Continuity Modeling of Cold		5.2.	Stratocumulus Forming in Boundary	
	Clouds Using Generalized Mass-Size			Layers Heated from Below	111
	and Area-Size Relations	75		5.2.1. Climatology	111
				5.2.2. Conceptual Model of the Formation	1
1	Remote Sensing of Clouds and			of a Cloud Topped Mixed Layer	112
	recipitation	77		5.2.3. Mathematical Modeling of	
				Cloud Topped Mixed Layer	
	 Absorption, Scattering, and the 			Formation	114
	Microwave Domain	78		5.2.4. Stratocumulus with Drizzle	118
ł	2. Passive Microwave Sensing of			5.2.5. Later Stages of the Stratocumulus	
	Precipitation	79		Lifecycle	118
1	3. Radar Sensing of Clouds and			5.2.6. Cellular Structures and Patterns in	
	Precipitation	80		Stratocumulus Fields	118
1	 Radar Reflectivity from Returned Power 	82		5.2.7. Boundary Layer Rolls and Cloud	
1	5. Radar Polarimetry	154		Streets	120
	4.5.1. Parameters Measured by		5.1	Altostratus and Altocumulus	124
	Dual-Polarization Radar	84		5.3.1. Altostratus and Altocumulus	
	4.5.2. Identification of Hydrometeor			Produced as Remnants of Other	
	Type with Dual-Polarization Radar	85		Clouds	124
4	Relating Radar Measurements to			5.3.2. Altocumulus as High Based	
	Hydrometeor Concentration,			Convective Clouds	125
	Precipitation, Fall Velocity, and			5.3.3. Altostratus and Altocumulus	
	Cloud-System Structure	86		as Shallow Layer Clouds Aloft	125
	4.6.1. Particle-Size Method	86		5.1.4. Ice Particle Generation By	
	4.6.2. Rain-Gauge Method	87		Altocumulus Elements	127
				A A A A A A A A A A A A A A A A A A A	
	4.6.3. Polarimetric Improvement of Rain			5.1.5. Interaction of Allocumulus and	

Contents					in.
5.4	Circilorm Clouds	127	7	The Pressure Perturbation Field	
	5.4.1. Nomenclature	1.27		Associated with Buowancy	166
	5.4.2. Climatology and Drizins of		7.	1. Entrainment and Detrainment	167
	Cimitorm Clouds	128		7.3.1. General Considerations	167
	5.4.1. Microphysics, Vertical Air Motions,			7.3.2. Early Views of Mixing with	
	and Radiation Cirillom Clouds	130		the Cloud's Environment	168
	5.4.4. Small Cirilorm Convective			7.3.3. More Realistic Views of	
	Elements "Generating Cells"	132		Entrainment and Detrainment	175
	5.4.5. Buoyant Anvil Dynamics	133		7.3.4. Effect of Entrainment on Buoyancy	
	5.4.6. Radiative Destabilization and			and Downward Motion Near	
	Shear Effects on a Layer of			Cloud Edge	176
	Cirriform Cloud	137		7.3.5. Lateral Versus Cloud-Top	
	5.4.7. Mesoscale Circulation Induced By			Entrainment	176
	Radiative Heating of a Layer			7.3.6. Convective Cloud in a Fixed	
	of Cimiorm Cloud	138		Column	177
10.000	a second and second second			7.3.7. Representation of Mixing in	
6, Nin	nbostratus and the Separation			Multidimensional Models of	
of	Convective and Stratiform			Convective Clouds	180
Pre	cipitation	141		7.3.8. Representation of Convective	
61	Definition of Stratiform Provinitation			Clouds in Large Scale Models	
	and How It Differs from Convective			of the Atmosphere	182
	Precinitation	147	7.	 Vorticity and Dynamic Pressure 	
6.2	The Contrastine Radar-Echo Structures			Perturbation Forces	182
	of Stratiform and Convective			7.4.1. The Vorticity Approach to	
	Precipitation	144		Understanding Rotation and	
63	Microphysical Observations in			Dynamic Pressare in Convective	
	Nimbostratus and Implied Vertical			Clouds	182
	Air Motions	146		7.4.2. Horizontal Vorticity	182
6.4.	Role of Convection in Regions			7.4.3. Vertical Vorticity Introduced by	
	of Stratiform Precipitation	147		Tilling of Environmental Honzontal	1000
6.5.	Stratiform Precipitation with Shallow			Vorticity	1.83
	Overturning Convective Cells Aloft	147		7.4.4. Effects of vortices on Entrainment	1.00
6.6.	Stratiform Precipitation Produced			and Pressure Perturbation	183
	by Deep Convection	152			
	6.6.1. Particle Fountains and the		8. C	umulonimbus and Severe Storms	187
	Evolution of Deep Convective			The Basic Considerateshere Cloud	100
	Cells into Nimbostratus	152	8	Addical Steems	190
	6.6.2. Stratiform Precipitation Produced		8	L Supercell Storms	194
	by Discrete Redevelopment		8.	4 Emironmental Conditions Exorine	
	of Deep Convection	154	100	Different Types of Deep Convective	
	6.6.3. Stratiform Precipitation Produced			Storms	198
	by Convective Redevelopment		8.	5. Supercell Dynamics	203
	in a Various Wind Shear			8.5.1. Storm Splitting and Propagation	203
	Environments	156		8.5.2. Directional Shear in the	
	6.6.4. Microphysics of the Stratiform			Environment of the	
	Precipitation Associated with	1.00		Cumulorimbus Cloud	204
	Deep Convective Clouds	157		8.5.3. Updraft Rotation	205
6.7.	Radiative Effects on Nimbostratus	101		8.5.4. Helicity and the Strength of	
6.8.	Separation of Convective and Stratiform			Supercell Updraft Rotation	207
	recipitation	102		8.5.5. Baroclinicity Associated with	
7 Ras	ic Cumulus Dynamics	165		Downdrafts	207
r. 045	Contrains Dynamics	1200		8.5.6. The Three Sources of Rotation	
7.1.	Buoyancy	165		in a Supercell	207

16

330 331

374

					Co	ntents
	84	Tornadosennais in Supercell Storms	205	9.4	Datalk of the Convection Ration	14
		8.6.1. The Primary Factors Contributing to	~		9.4.1 Observed Aidlow	35.8
		Tomado Formation in a Supercell	208		9.4.2 Posterio Particulation Field	359
		16.2 Orchaise Deardeath, the Serier			9.4.1 Thermal and Water Vary	200
		Manager fore and Martin			Borburbatione	36.1
		Presidence and vortex	200		0.4.4 Abditedialar Amort of the	201
		Ground Teachy of Summerall Tornadous	250		Competition Line and Coll	
	8.4	Non Supercell Tomodour and	210		Edu Carlor	36.3
	0.0.	Watercourts	211		0.4.5 Crash-Wasse and Interaction	202
	1.0	The Townede	24.2		with the Destendant	100
	49,00	9.9.1 Observed Deschurp and Life			0.2.4 Row Echo Econotics and Efforts	100.0
		Costs of a Tomado	20.2		of the Stratiform Perion on the	
		8.9.2 Modes Demonics	215		Connection Region	14.4
		R.G.T. Modes Produktion	74.0	4.5	Datalk of the Statilians Basics	14.0
		8.9.4. Multiple Visites Townshop	222	9.3.	9.5.7 Thread Air Motion and	200
		Developer and Marchards	331		Province of the second second second	
	0.10	9 10 1 Definition and Description Media	221		Statifian Chief	14.00
		8.10.7. Ellipsis of Microbiotic on Alerrah	222		9.5.2 Thermodynamic Structure of the	200
		8.10.2. Diets of webbelies of second	224		S.S.2. THENDOYNAMINE SITURATE OF the	17.1
		8.10.1. Deschart Reter Condition and			0.5.1. The Messach Described	17.4
		Codenat Work	227		9.5.5. The Mesoscale Downeran	219
		Cust Fronts Damchos and Arrun Cloude	337		Structure at the Top of the	
		9.53.1 Cost Front Discourses and			Sections Cloud	
		Nonecel days	177		0.5.5. The Wales Low	377
		8.11.2 Comits Comer Demonics	3.30		9.5.6. Midle of fully to the Meson de	***
		6.11.2. Gravity Current Dynamics	220		9.5.6. Manever annow to the Mesoncare	
	0.14	. Lines of Convective Storms	2.8.8		Disk in Press	Les.
				2/0,	Unvergence, thatable processes, and	
9.	Me	soscale Convective Systems	237		voracity	201
		Connel Characteristics			5.6.1. The Divergence Proble	201
	3.1.	General Characteristics	237		5.6.2. The Distribution of Heating and	1000
		5.1.1. Mienne Okserven Cloud Tops	1000		0.6.2 Master Development	202
		and the store interse strong Connect	4.80		2.0.5. vonex beveropment	202
		Server and an APT	1000		en en angen an de bennes concernes e	
		B13 Class of MCC.	334	10. Ck	ouds and Precipitation in Tropical	
		B.I.J. Ratio Components of an MCS	2.00	Cy	clones	287
		0.1.5 Internal Deachans	241	10	t Definitions (Timutolomy and the	
		0.1.6. Life Code	341		Senontic Scale Contents of Tronical	
	62	Louding Jine/Trailing Stratifizern Structure	345		Carlones	267
	~	4.3.1. Radar Echo Structure and Vertical	- T.	10	2 Clouds Involved in Tranical	
		Air Motions	245		Cyclorenesis	288
		9.7.7 Multicellular Structure	247		10.2.1 Muslimation of the Clouds	110
		9.2.1. Forward Overhang, Rear Inflow			in an Internifying Depression	366
		and Ascending Front to Rear Flow	248		10.2.2. Example of a Vortical Hot Tower	290
		9.2.4 Precinitation Processes and	100		10.2.3. Ensemble of Clearls in a	
		Trajectories	248		Developing Storm	290
		9.2.5 Pressure Pattern	248		10.2.4. Cloud Levelback in Cyclopenesia	-250
		9.2.6 Electrical Structure	349	10	1. Overview of the Mature Tropical	
	93.	Bulk Dynamical View	250		Cyclone	293
	100	9.1.1. Lawrend Mesoncale Airflow	250		10.1.1. Visible Clouds	291
		9.1.2 Streamlines of Two Dimensional			10.1.2. Three-Dimensional Wind Field	291
		Steady State Ascent and Descent	250		10.3.1. Equivalent Potential Temperature	್
		9.1.3. Wave Interpretations	254		and Angular Momentum in	
		9.3.4. The Crossover Zone	256		Relation to the Eye and Eyewall	295

444

> Contents 10.4. The Eye 11.1.1. Idealized Horizontal and Vertical
> 10.4. The Eye
> 296
>
>
> 10.5. Dynamics of the Mean Eyewall Cloud
> 299
>
>
> 10.5.1. Skoping Angular Momentum Surfaces
> 299
>
>
> 10.5.2. Bioundary-Layer Assumptions and Implications
> 209
> J. J. Idealized Fonzonial and Vertical Structure
> J. Z. Dynamics Governing Large Scale Vertical Air Motion
> J. Application of the Omega Equation to a Real Baroclinic Implications 10.5.1. Connecting the Balanced Vortex 300 Wave with a Simplified Boundary Layer 301 10.5.4. Thermodynamic Relationships Applied in the Lyewall Region 302 10.5.5. Characteristics of the 70 Surfaces Above the Boundary Layer 10.5.6. Relating 77 and θ_c Surfaces in the Eyewall Region to the Top of the 302 302 Boundary Layer 10.5.7. Properties of the Top of Boundary Layer in the Eyewall Region 303 10.5.8. Solutions for the *m* and *θ*_{ex} 1953-8: Sourcers for the *m* and *B_m* Surfaces in the Eyewall Cloud 304 10.5, 9: Temporal Development and Stability of the Mean Two-Dimensional Eyewall Cloud 305 Substructure and Neumentwall Cloud 305 10.6. Substructure and Asymmetry 306 of the Evewall Cloud 10.6.1. Conditional Instability Within the Eyewall Cloud 10.6.2. Eyewall Vorticity Maxima 306 and Strong Updrafts 10.6.3. Statistics of Updrafts and Downdrafts in Eyewall Clouds 10.6.4. Downdrafts in the Eyewall 308 309 311 10.6.5. Eyewall Asymmetry Owing to Storm Motion and Shear 10.6.6. Cloud Microphysical Processes in the Eyewall and Inner Core 312 in the Eyeall and Inter Cor-Region 10.6.7. Ilectrification the Eyeal 10.7. The Region of the Eyeal 10.7. The Region of the Eyeal 10.7. The Region of the Eyeal 10.7. In the Neural Region of the 10.7. It for the Neural Region of the 10.7. J. The Principal Reachant 10.7.3. The Principal Reachant 10.7.3. The Strange States and 10.7.5. System Reachant 10.7.5. System Control States and Regionment 313 315 315 315 319 319 322 325 Replacement 12.2.5. Clouds Associated with Venically Propagating Waves 35
> 12.2.4. Clouds Associated with Lee Waves 35
> 12.2.5. Nonlinear Effects: Large Amplitude 11. Clouds and Precipitation in Extratropical Cyclones 329 Waves, Blocking, the Hydraulic Jump, and Rotor Clouds 376 11.1. Structure and Dynamics of a Baroclinic

330

Wave

333 11.1.4. Low-Level Cyclone Development 334 11.1.5. Development of the Thermal Pattern in an Estratropical Cyclone 334 Pattern in an Extratopical Cyclone 334 112. Greculation at a Front 334 11.2.1. Qualgeostrophic Frontogenesis 335 11.2.2. Semigrosotrophic Frontogenesis 340 11.2.4. Nodel Trontogenesis 140 11.2.4. Some Simple Theoretical 141 11.2.4. Some Simple Theoretical Examples 11.3. Horizontal Patterns of Frontal Zones in Developing Cyclones 11.4. Clouds and Precipitation in a Frontal Cyclones 341 344 347 Cyclone 11.4.1. Water-Vapor Influx, Atmospheric Rivers, and the Warm Conveyor fielt 347 11.4.2. Satellite Observed Cloud Patterns 347 A.3. Distribution of Precipitation Within the Cloud Pattern A.4. Narrow Cold Frontal Rainbands 349 352 355 357 11.4.5. Wide Cold Frontal Rainbands 11.4.6. Warm Frontal Rainbands 11.4.7. Clouds and Precipitation Associated with the Trough of Warm Air Aloft 11.4.8. Rainbards in the Comma Head of the Occlusion 11.5. Clouds in Polar Lows 361 362 363 363 11.5.1. Comma-Cloud Systems 11.5.2. Tropical Cyclone Dynamics in Cold Airstreams 365 12. Clouds and Precipitation Associated with Hills and Mountains 369 12.1. Shallow Clouds in Stable Upslope Flow 369 12.2. Wave Clouds Produced by Long Ridges 370 12.2.1. Flow over Sisusoidal Terrain 370 12.2.2. Flow over a Ridge of Arbitrary Shape 12.2.3. Clouds Associated with Vertically 372 373

关于本课程,你有什么建议?