$$
\frac{\partial \boldsymbol{v}}{\partial t} + (\boldsymbol{v} \cdot \nabla) \boldsymbol{v} = -\frac{\nabla p}{\rho} + \boldsymbol{F}',
$$

$$
\frac{\mathrm{D}\rho}{\mathrm{D}t} + \rho \nabla \cdot \boldsymbol{v} = 0, \qquad \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{v}) = 0
$$

$$
p = \rho R T,
$$

$$
\frac{DI}{Dt} + p\alpha \nabla \cdot \boldsymbol{v} = \dot{Q}_T
$$

- 5

$$
\frac{\partial}{\partial t} \left[\rho \left(\frac{1}{2} \mathbf{v}^2 + I + \Phi \right) \right] + \nabla \cdot \left[\rho \mathbf{v} \left(\frac{1}{2} \mathbf{v}^2 + I + \Phi + p/\rho \right) \right] = 0.
$$
\n
$$
\frac{\partial E}{\partial t} + \nabla \cdot \left[\mathbf{v} (E + p) \right] = 0,
$$

Von Neumann's method

$$
\frac{\partial \psi}{\partial t} + c \frac{\partial \psi}{\partial x} = 0
$$

The CFL condition requires that the numerical domain of dependence of a finite difference scheme include the domain of dependence of the associated partial differential equation

Courant-Fredrichs-Lewy (CFL) Condition

Upwind Scheme

$$
\frac{u_i^{n+1} - u_i^n}{dt} + c \frac{u_i^n - u_{i-1}^n}{dx} = 0
$$

Lax equivalence theorem

If a finite-difference scheme is linear, stable, and accurate of order (p,q), then it is convergent of order (p,q) (Lax and Richtmyer 1956).

1.3 浅水模型及应用实 例

Examples of Shallow Water

Layers of the Atmosphere

- 1. Constant density
- 2. Small aspect ratio (vertical to horizontal)

Governing Equations

$$
\boxed{\frac{\mathrm{D}\boldsymbol{u}}{\mathrm{D}t}+f\times\boldsymbol{u}=-g\nabla\eta},
$$

$$
\boxed{\frac{\mathrm{D}h}{\mathrm{D}t} + h \nabla \cdot \boldsymbol{u} = 0}.
$$

 $h = \eta - \eta_b$.

$$
\frac{\partial}{\partial t}\frac{1}{2}\left(hu^2+gh^2\right)+\nabla\cdot\left[\frac{1}{2}u\left(gh^2+hu^2+gh^2\right)\right]=0,
$$

Shallow Water Waves on f-plane

$$
\frac{\mathrm{D}\boldsymbol{u}}{\mathrm{D}t}+\boldsymbol{f}\times\boldsymbol{u}=-g\nabla\eta
$$

$$
\boxed{\frac{\mathrm{D}h}{\mathrm{D}t} + h \nabla \cdot \boldsymbol{u} = 0}.
$$

 $(3.98a.b.c)$

We non-dimensionalize these equations by writing

$$
(x, y) = L(\hat{x}, \hat{y}),
$$
 $(u', v') = U(\hat{u}, \hat{v}),$ $t = \frac{L}{U}\hat{t},$ $f_0 = \frac{\hat{f}_0}{T},$ $\eta' = H\hat{\eta},$ (3.99)

 $\frac{\partial u'}{\partial t} - f_0 v' = -g \frac{\partial \eta'}{\partial x}, \qquad \frac{\partial v'}{\partial t} + f_0 u' = -g \frac{\partial \eta'}{\partial y}, \qquad \frac{\partial \eta'}{\partial t} + H \left(\frac{\partial u'}{\partial x} + \frac{\partial v'}{\partial y} \right) = 0.$

and (3.98) becomes

$$
\frac{\partial \hat{u}}{\partial \hat{t}} - \hat{f}_0 \hat{v} = -\hat{c}^2 \frac{\partial \hat{\eta}}{\partial \hat{x}}, \qquad \frac{\partial \hat{v}}{\partial \hat{t}} + \hat{f}_0 \hat{u} = -\hat{c}^2 \frac{\partial \hat{\eta}}{\partial \hat{y}}, \qquad \frac{\partial \hat{\eta}}{\partial \hat{t}} + \left(\frac{\partial \hat{u}}{\partial \hat{x}} + \frac{\partial \hat{v}}{\partial \hat{y}}\right) = 0. \quad (3.100a,b,c)
$$

where $\hat{c} = \sqrt{gH}/U$ is the non-dimensional speed of non-rotating shallow water waves. (It is also the inverse of the Froude number U/\sqrt{gH} .) To obtain a dispersion relationship we let

$$
(\hat{u}, \hat{v}, \hat{\eta}) = (\tilde{u}, \tilde{v}, \tilde{\eta}) e^{i(\hat{k} \cdot \hat{x} - \widehat{\omega} \hat{t})}, \qquad (3.101)
$$

where $\hat{\mathbf{k}} = \hat{k}\mathbf{i} + \hat{l}\mathbf{j}$ and $\widehat{\omega}$ is the non-dimensional frequency, and substitute into (3.100), giving

$$
\begin{pmatrix}\n-i\widehat{\omega} & -\widehat{f}_0 & i\widehat{c}^2\widehat{k} \\
\widehat{f}_0 & -i\widehat{\omega} & i\widehat{c}^2\widehat{l} \\
i\widehat{k} & i\widehat{l} & -i\widehat{\omega}\n\end{pmatrix}\n\begin{pmatrix}\n\widetilde{u} \\
\widetilde{v} \\
\widetilde{\eta}\n\end{pmatrix} = 0.
$$
\n(3.102)

Shallow Water Waves on f-plane

$$
\omega^2 = f_0^2 + gH(k^2 + l^2)
$$

Figure 6. Time-longitude section of CLAUS brightness temperature T_b , averaged from 2.5°S to 7.5°N, from 1 April through 2 June 1987. T_b shading scale is shown at the bottom in K .

Kiladis (2009)

Shallow Water Waves on β -plane

Quasi-Geostrophic Motions in the Equatorial Area*

By Taroh Matsuno

Geophysical Institute, Tokyo University, Tokyo (Manuscript received 15 November 1965, in revised form 11 January 1966)

Kelvin Wave

Theory OBS

Rossby Wave

Mixed Rossby-Gravity Wave

Theory OBS

Tilted Vertical Structure

Figure 19. The hierarchy of cloudiness, temperature, and humidity within CCEWs, valid from MCS to MJO scales. Wave movement is from left to right (adapted from Johnson et al. [1999], Straub and Kiladis [2003c], and Khouider and Majda [2008]).

Scale Selection?

MJO?

Equatorial Convectively Coupled Waves in a Simple Multicloud Model

BOUALEM KHOUIDER

Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada

ANDREW J. MAJDA

Department of Mathematics and Center for Atmosphere/Ocean Sciences, Courant Institute, New York University, New York, New York

(Manuscript received 31 January 2008, in final form 14 April 2008)

$$
\mathbf{V}(x, y, z, t) = \sqrt{2}\mathbf{v}_1(x, y, t) \cos z + \sqrt{2}\mathbf{v}_2(x, y, t) \cos 2z \text{ and}
$$

$$
\Theta(x, y, t, z) = z + \sqrt{2}\theta_1(x, y, t) \sin z + 2\sqrt{2}\theta_2(x, y, t) \sin 2z, \quad 0 \le z \le \pi.
$$

$$
\partial_t H_c = \tau_c^{-1} (\alpha_c \Lambda Q_c^+ - H_c)
$$

$$
H_d = (1 - \Lambda) Q_d^+
$$

$$
\partial_t H_s = \tau_s^{-1} (\alpha_s H_d - H_s)
$$

$$
\begin{aligned}\n&=1 \text{ if } \theta_{eb} - \theta_{em} \ge 20 \text{ K} \\
&=0 \text{ if } \theta_{eb} - \theta_{em} \le 10 \text{ K} \\
&\text{Linear continuous for } 10 \text{ K} \le \theta_{eb} - \theta_{em} \le 20 \text{ K}\n\end{aligned}
$$

Linear Instability Analysis

$$
\frac{\partial \mathbf{v}_1}{\partial t} + \beta y \mathbf{v}_1^{\perp} - \nabla \theta_1 = -C_d u_0 \mathbf{v}_1 - \frac{1}{\tau_R} \mathbf{v}_1
$$
\n
$$
\frac{\partial \theta_1}{\partial t} - \nabla \cdot \mathbf{v}_1 = H_d + \xi_s H_s + \xi_c H_c + S_1
$$
\n
$$
\frac{\partial \mathbf{v}_2}{\partial t} = \beta y \mathbf{v}_2^{\perp} - \nabla \theta_2 = -C_d u_0 \mathbf{v}_2 - \frac{1}{\tau_R} \mathbf{v}_2
$$
\n
$$
\frac{\partial \theta_2}{\partial t} - \frac{1}{4} \nabla \cdot \mathbf{v}_2 = (-H_s + H_c) + S_2
$$
\n
$$
\frac{\partial q}{\partial t} + \nabla \cdot [(\mathbf{v}_1 + \tilde{\alpha} \mathbf{v}_2)q + \tilde{Q}(\mathbf{v}_1 + \tilde{\lambda} \mathbf{v}_2)] = -P + \frac{D}{H_T}; \quad P = \frac{2\sqrt{2}}{\pi} (H_d + \xi_s H_s + \xi_c H_c)
$$
\n
$$
\frac{\partial \theta_{eb}}{\partial t} = \frac{1}{h_b} (E - D).
$$

$$
\frac{\partial \mathbf{U}}{\partial t} + \mathbf{A} \frac{\partial \mathbf{U}}{\partial x} + \mathbf{R}_1 \frac{\partial \mathbf{U}}{\partial y} + \mathbf{R}_2(y\mathbf{U}) = \mathbf{B}\mathbf{U}, \quad (3.3)
$$

where $\mathbf{U} = (u_1, v_1, u_2, \theta_1, \theta_2, \theta_{eb}, q, H_s, H_c)$ represents a perturbation about the RCE solution and A, R_1, R_2, B are 10×10 matrices representing the different forcing terms in the multicloud equations. To solve for linear

2004). Next, we seek plane wave solutions of the form

$$
\mathcal{U}(x,t) = \mathcal{U} \exp[I(kx - \omega t)], \quad I^2 = -1,
$$

where k is the zonal wavenumber, with $k = 1$ corresponding to a wavelength spanning the equatorial ring, and ω is the generalized phase such that real(ω)/k is the phase speed and imag(ω) is the growth rate.

Four Theories of the Madden-Julian Oscillation

C. Zhang¹ \Box , Á. F. Adames², B. Khouider³ \Box , B. Wang⁴, and D. Yang^{5,6}

¹NOAA Pacific Marine Environmental Laboratory, Seattle, WA, USA, ²Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, USA, ³Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada, ⁴Department of Atmospheric Sciences, University of Hawaii, Honolulu, HI, USA, ⁵Department of Land, Air and Water Resources, University of California, Davis, CA, USA, ⁶Lawrence Berkeley National Laboratory, Berkeley, CA, USA

 $\mathcal{L}(\mathcal{A})$

Common Framework of MJO Theories

$$
\frac{\partial u}{\partial t} - \beta y v = -\frac{\partial \phi}{\partial x} - \epsilon u
$$

$$
\frac{\partial v}{\partial t} + \beta y u = -\frac{\partial \phi}{\partial y} - \epsilon v
$$

$$
\frac{\partial \phi}{\partial t} + H \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = Q_1 - \mu \phi
$$

$$
\frac{Dq}{Dt} = -Q_2
$$

$$
R'=-rP',
$$

Cloud-radiative feedback scale mechanism

Gill-type Model for MJO winds

