TR [E]m Shallow Water Quasi-Geostrophic Equations
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where ¢ = (g/ fo)n, Lfi = gH/ foz, and the advective derivative is

=5 tUas - T Va3 = 37 T 37 3x T == W = ) (5.67)

q=C+By—-"n=VyY+By— Sy (5.69)

is the shallow water quasi-geostrophic potential vorticity.



TR [E] Barotropic Instability

black color represents vorticity



ETIREIM  Theoretical results

Fig. 6.4 Barotropically unstable velocity profiles. In the simplest case, on the left, a
region of shear is sandwiched between two infinite regions of constant velocity. The
edge waves at y = +a interact to produce an instability. If a = 0, then the situation
corresponds to that of Fig. 6.1, giving Kelvin—-Helmholtz instability. In the case on the
right, the flow is bounded at y = +b. It may be shown that the flow is still unstable,
provided that b is sufficiently larger than a. If b = a (plane Couette flow) the flow is
stable to infinitesimal disturbances.



TR [E] Dealiasing by 2/3 rule




FTR[EIE Multistage Scheme

g1 = hF(¢"), ¢1 =" +q

Runge-Kutta 2
. g2 =hF(p)) —q1, "t =¢1 +¢2/2

g1 = hF(¢"), q2 = hF(@" +q1/2)
Runge-Kutta 4 q3 = hF(¢" +q2/2), qs = hF(¢" +q3)
¢" ! = ¢" + (g1 + 292 + 243 + 44)/6



FTR[EIE  Hyperviscosity

—A%u ~ —(k* +1%)*4
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Homework 1

Homework 1 (deadline: Oct. 10)

Demonstrate barotropic instability numerically based on the shallow water quasi-geostrophic equation in
the presence of a background zonal wind shear U (y). You can build your own code based on the python code
shown in the class (the python code can be downloaded from the course website https://qiuyang50.github.
io/_pages/modeling_2024fall/). The shallow water quasi-geostrophic equation reads as follows,

D oo 2 o
E(Vw—szp)Jrﬁ%—O (1)

where % = % - %8% + %a%, f, F, p are all dimensionless constant, U (y) has the following profile,

1 Yy >a
U(y) =4 v/a -a<y<a
—1 y < —a

Step 1: initialize the variable . Hint: you can set the initial value of 1) as a combination of background

state and a perturbation, ¥ (z,y,0) = ¥ (y) + ¢/, where ¥ (y) satisfies U (y) = —a‘gg‘/),

Step 2: add a perturbation v, which has to be small in amplitude and periodic at the domain boundaries.

For example,
2rk _ w2
Y = 10" *sin (2@") e a2

You may try other forms of perturbations.

Step 3: consider multiple scenarios with different values of a and k and compare your results with the the-
oretical prediction mentioned in the class. Hint: a * k£ should be small enough for the emergence of instability.
See chapter 6.2 (page 256) in Vallis’s book.

Homework requirement: please summarize all you findings in a report, particularly including several
snapshots of the vorticity field to demonstrate the barotropic instability. A thorough discussion about the
choice of a and k in terms of barotropic instability is appreciated.
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Dartmouth Summer Research Project on Artificial Intelligence

John McCarthy

The Proposal states:

We propose that a 2-month, 10-man study of artificial intelligence
be carried out during the summer of 1956 at Dartmouth College
in Hanover, New Hampshire. The study is to proceed on the basis of
the conjecture that every aspect of learning or any other feature of
intelligence can in principle be so precisely described that a
machine can be made to simulate it. An attempt will be made to
find how to make machines use language, form abstractions and
concepts, solve kinds of problems now reserved for humans, and
improve themselves. We think that a significant advance can be
made in one or more of these problems if a carefully selected
group of scientists work on it together for a summer.
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RESEE: ChatGPT

ChatGPT >
Can you write a python code for solving transport equation u_t + c*u_x=0 EXplanation.
1. Parameters:
@ The transport equation % + ¢, = Ujs a simple linear partial differential equation (PDE). Here's a Python code using finite difference + c: Wave speed.

« L: Length of the spatial domain.

methods (FTCS) to numerically solve it: X X
« T: Total time to simulate.

« nx: Number of spatial grid points.

Python Code - nt: Number of time steps.
« dx: Spatial step size.
python & Copy « dt: Time step size.

«+ sigma: Courant-Friedrichs-Lewy (CFL) condition, necessary for stability.
2. Initial Condition:
« A Gaussian profile is used as the initial condition, which is centered at = = L/2,

import numpy as np
import matplotlib.pyplot as plt

# Parameters 3. Numerical Scheme:
c=1.0 # Wave speed - The finite difference method used is Forward-Time Central-Space (FTCS). This is an explicit scheme to update the solution at each
L =10.0 # Length of the domain :
i time step.
T=5.0 # Total time 4. Visualization:
nx = 100 # Number of spatial grid points ciisiiatization:
nt = 500 # Number of time steps « The code plots the initial profile, intermediate steps, and the final profile.
dx =L / (nx - 1) # Spatial step size
dt =T / nt # Time step size

y L Let me know if you need further customization!
sigma = ¢ * dt / dx # CFL condition

# Initial condition: a Gaussian profile
def initial_condition(x):
return np.exp(-@.5 * (x — L / 2) %% 2)

# Spatial grid and initial state
= np.linspace(®, L, nx)
u = initial_condition(x)

# Store the solution at each time step for visualization
u_history = [u.copy()]

# Time-stepping loop (FTCS method)
for n in range(1, nt):
u_new = u.copy()
for i in range(1, nx-1):
u_new[i] = uli] - sigma * (ul[i] - uli-1])
u = u_new.copy()
u_history.append(u)

# Plotting the results

plt.figure(figsize=(8, 6))

plt.plot(x, u_history[@], label="Initial Condition")
plt.plot(x, u_history[nt//4], label="1/4 Time Step")
plt.plot(x, u_historylnt//21, label="1/2 Time Step")
plt.plot(x, u_history[-11, label="Final Time Step")
plt.title('Solution to the Transport Equation $u_t + ¢ u_x = 0$')
plt.xlabel('x")

plt.ylabel('u')

plt.legend()

plt.grid()

plt.show()



ChatGPT »

Can you show me how to derive shallow water equation

@ The shallow water equations (SWEs) are a set of partial differential equations that describe fluid flow in situations where the horizontal
length scale is much larger than the vertical depth scale, such as oceans or atmospheric flows. These equations are derived from the
basic principles of fluid mechanics—conservation of mass (continuity equation) and conservation of momentum (Euler’s equations)—
under the assumption of hydrostatic pressure.

1. Assumptions:
« The flow is incompressible.

« The fluid is inviscid (i.e., viscosity is neglected).
« The vertical acceleration is small, and hydrostatic balance applies in the vertical direction.

b) ion in the V-Dir

s ot
« The pressure at the free surface of the fluid is constant (usually atmospheric pressure). Similarly, for the ¥-direction:

Let’s derive the shallow water equations in two dimensions (x and y), assuming a depth h(z,y,t). (,)“ +u ,01' +v f)” =—g f)”
ot oz Ay oy

2. Conservation of Mass (Continuity Equation):
Multiplying by h:
Consider a small fluid element in a domain. The rate of change of the total mass in this element must equal the net flux of mass into or out

of the element. Ahv) | d(huv)  (hv?) /1(1']
at of Ty

The water column height is given by (2,4, t) = H +1(z,y.t), where H is the constant mean water depth, and 7(; ;1) is the deviation of
the free surface from the mean depth.

4. Summary of the Shallow Water Equations:
Let “(z.y,1) and v(7, ) represent the horizontal velocity components in the 2 and ¥ directions.

1. Continuity equation (Conservation of mass):
The mass conservation equation is: oh  O(hu)  O(hv)

=t —===10
o Ox o]

oh o) | O(hv) _

ot or =y

0 2. Momentum equation in the z-direction:

Ahu) O(hu®) O(huv) on
et N ARt
ot & o o Ay i

This is the continuity equation in the shallow water approximation.
3. Momentum equation in the Y-direction:

3. Conservation of Momentum (Euler’s Equations): 9(hv) oL I(huv) o (hv?) =—gh o
ot or By oy
The shallow water momentum equations are derived from the Euler equations under the hydrostatic assumption. In the z- and ¥
-directions, the momentum equations take the following form: These are the two-dimensional shallow water equations, which describe how the fluid height and horizontal velocity evolve over time.

In these equations, « and v represent the velocity components, / is the height of the fluid, and ¢ is the acceleration due to gravity.
a) Momentum Equation in the z-Direction:

Using the incompressible Euler equations for momentum and applying the shallow water approximation:

(')u_‘ ou Ou an
o Yo Yoy or

where 9 is the acceleration due to gravity and 7(<: ¥, ) is the surface height deviation from mean depth.
Multiplying by / (to account for the height of the water column):

O(hu) ; (')(huz) A(huv) " an
B - = —gh
ot ox Ay 9 or



ChatGPT >

Can you draw a picture for the sun

Here is a bright and radiant depiction of the sun. Let me know if you'd like any changes or further details!
@ S @ d KV

can you add a face on top of that

Here is the sun with a cheerful face added! Let me know if you'd like any further adjustments.



ChatGPT >

Can you explain to me what is the Madden-Julian Oscillation?

@ The Madden-Julian Oscillation (MJO) is a large-scale atmospheric phenomenon that plays a crucial role in tropical weather patterns,
especially in influencing rainfall and storm activity across different regions. Here's a basic breakdown of what it is:

1. Definition:

The MJO is an eastward-moving pulse of cloudiness, rainfall, and wind that travels around the globe near the equator, particularly in the

Indian and Pacific Oceans. It's different from other climate systems like El Nifio, which are stationary and last for long periods. The MJO

moves across the tropics, typically over a 30- to 60-day period.

2. Phases:

The MJO consists of two main phases:

- Convective Phase: This is the active phase, where there is increased cloud cover, rain, and thunderstorm activity. During this phase,
moisture builds up in the atmosphere.

- Suppressed Phase: This is the quieter phase, with less cloud cover and reduced rainfall. The atmosphere tends to be drier.

As these phases move across the globe, they influence weather patterns in the areas they pass over.

3. Global Influence:

- Tropical Regions: The MJO can impact monsoon systems, especially in South Asia and Southeast Asia, as well as tropical cyclones.

« Mid-Latitudes: Though it primarily affects the tropics, the MJO can indirectly influence weather in the mid-latitudes, such as triggering
storm systems in North America or Europe.

4. Interaction with Other Climate Systems:

The MJO interacts with other large-scale climate systems like El Nifio and La Nifia. For example, during El Nifio events, the MJO may
strengthen or weaken depending on its phase, which can affect weather predictability.

5. Importance:

- Weather Forecasting: Because the MJO moves relatively predictably over weeks, it is useful for medium-range weather forecasts,
particularly in regions like India, Australia, and the Americas.

- Impact on Extreme Weather: It can trigger or enhance extreme weather events like floods, heatwaves, or tropical cyclones, making it a
critical factor in disaster preparedness.

In summary, the MJO is an important part of the Earth's climate system, particularly for influencing tropical weather and global
atmospheric circulation.
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Earth-2

Accelerated, Al-augmented, high-resolution climate and

weather simulations with interactive visualization.

h=2 Data: DKRZ/MPI-M, ICON Model

Overview Services Demos

Adopters

Accelerating Climate Change Predictions

NVIDIA Earth-2 is a full-stack, open platform that accelerates climate and weather predictions with
interactive, Al-augmented, high-resolution simulation. It includes physical simulation of numerical
models like ICON; machine learning models such as FourCastNet, GraphCast, and Deep Learning
Weather Prediction (DLWP) through NVIDIA Modulus; and data federation and visualization with NVIDIA
Omniverse™. Running on NVIDIA DGX™ GH200, HGX™ H100, and OVX™ supercomputers, Earth-2 will

provide a path to simulate and visualize the global atmosphere at unprecedented speed and scale.

FIBBEEZE https://www.nvidia.com/en-us/high-performance-computing/earth-2/
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High-P

Overview Services Adopters Demos

RVIDIA

Earth-2 Goes Down to Street
Level

City-scale simulation data is now incorporated into
the Earth-2 planetary digital twin. In this video, we
demonstrate the combination of high-resolution
simulation data from ICON, WRF, and PALM with
Google Photoreal Tiles served by Cesium using the
Earth-2 visualization service to help address
questions in the urban environment.

Watch Demo > (02:50)

Predicting Extreme Weather
Events Three Weeks in Advance
With FourCastNet

By running FourCastNet in NVIDIA Modulus, we were
able to generate 21-day weather trajectories of 1,000
ensemble members in a tenth of the time it
previously took to do a single ensemble—and with
1,000X less energy consumption.

Watch Predict Extreme Weather Events
with FourCastNet Demo > (01:40)

rmance Computing

Visualize Al-Augmented
Weather Simulations

Researchers are using interactive visualization of Al
weather forecasts, simulation data, and archived
data to analyze extreme weather.

Watch Generative Al Super-Resolution
Local Prediction of Weather Extremes
Demo > (01:27)

Interactive Visualization of
High-Resolution, Global-Scale
Climate Data in the Cloud

Built on NVIDIA Omniverse and the OpenUSD_ 3D
framework, the Earth-2 platform enables

aggregation and visualization of diverse, global-scale

climate simulation and geospatial datasets. Made

possible with cloud-native technology, visualizations

can be explored by anyone around the globe.

Watch Global Climate Visualization Demo
> (01:31)

Shop Drivers Support  Q

Accelerating Carbon Capture
and Storage with Fourier Neural
Operator and NVIDIA Modulus

By accelerating analysis 700,000X, NVIDIA
Omniverse and Modulus can help engineers with
planning and operating carbon capture and storage,
ensuring safe operation and long-term storage and
reducing the amount of carbon dioxide released into

our atmosphere.

Watch Carbon Capture Storage Demo >
(01:17)
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Accurate medium-range global weather forecasting
with 3D neural networks
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Question to be solved

What happened in 24 hrs
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Fig.1|Network training and inference strategies.a, 3DEST architecture.
Based onthe standard encoder-decoder design of vision transformers,

we adjusted the shifted-window mechanism' and applied an Earth-specific
positional bias. b, Hierarchical temporal aggregation. Once givenalead time,

we usedagreedyalgorithm to perform forecasting with as few steps as
possible. We use FM1, FM3, FM6 and FM24 to indicate the forecast models with
lead timesbeing1h,3h,6 hor24 h,respectively. A,is theinput weather state
and At denotes the predicted weather stateattime ¢ (in hours).



—e— Pangu-Weather —e— Operational IFS —e— FourCastNet
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Fig.2|Pangu-Weather produces higher accuracy than the operational IFS geopotential, temperature, specific humidity, and the u-component and
and FourCastNet in deterministic forecasts onthe ERA5 data. Tenvariables v-componentof wind speedat 500 hPa, respectively.Z850 and T850 indicate
were compared interms of latitude-weighted RMSE (lower is better) and ACC thegeopotential and temperature at 850 hPa, respectively. T2M indicates the
(higherisbetter), where the first five variables were reported in FourCastNet 2-mtemperature,and U10 and V10 indicate the u-componentand v-component

and thelast five were not.Here, Z500, T500,Q500, U500 and V500 indicate the of10-mwind speed, respectively.



Pangu-Weather, forecast time 72 hours ~ Operational IFS, forecast time 72 hours ERA5 (ground truth)
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Fig.3|Visualization of forecast results. The 3-day forecast of two upper-air (middle) and the ERAS ground truth®® (right) are shown. For all cases, the input
variables (Z500and T850) and two surface variables (2-m temperature and timeis 00:00 UTCon1September2018.

10-mwind speed). For each case, Pangu-Weather (left), the operational IFS?



a Track forecast for Typhoon Kong-rey b

Track forecast for Typhoon Yutu C

Mean direct position error
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Fig.4 | Pangu-Weather is more accurate at early-stage cyclone tracking
than ECMWF-HRES. a,b, Tracking results for two strong tropical cyclonesin
2018, thatis, Typhoon Kong-rey (2018-25) and Yutu (2018-26). The initial time
pointisshownbelow each panel. The time gap between neighbouring dotsis
6 h.Pangu-Weather forecasts the correct path of Yutu (thatis, it goes to the
Philippines) at12:00 UTC on 23 October 2018, whereas ECMWEF-HRES obtains
thesame conclusion 2 days later, before which it predicts that Yutu will make

Forecast time (hours)

abigturntothenortheast.c, AcomparisonbetweenPangu-Weather and
ECMWEF-HRES interms of meandirect positionerror over 88 cyclonesin2018.
Eachnumberinbracketsin thex-axisindicates the number of samples used to
calculate theaverage. Forexample, (788)’ means that there arein total 788 initial
pointsfromwhich the typhoonlasts foratleast 24 hours, and the 788 direct
positionerrors of Pangu-Weather and ECMWF-HRES were averaged into the
finalresults. Panelsaand bwere plotted using the Matplotlib Basemap toolkit.
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Fig.5| Ensemble forecast results of Pangu-Weather. The RMSE of the dashedlines), which further demonstrate the properties of our ensemble
ensemble mean forecast (lower isbetter) for three upper-air variables (Z500, forecastresults. Here,Z500,Q500 and U500 indicate the geopotential,
Q500and U500) and two surface variables (T2M and U10). We also followed a temperature and the u-componentofwind speed at500 hPa, respectively.

recent work® to plot two metrics, the CRPS (lower isbetter) and the spread-skill  T2Mindicates the 2-mtemperature and U10 indicates the u-component of 10-m
ratio (anideal ensemble model produces spread-skill ratios of 1.0, shownasthe  windspeed.
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Fig. 1 | Architecture of the CNN model used for the ENSO forecasts. The
CNN model consists of one input layer (the predictor), three convolutional
layers, two max-pooling (MP) layers, one fully connected (FC) layer,

and one output layer (the predictand). The variables of the input layer
correspond to the SST (in units of °C) and the oceanic heat content (HC, in
units of °C) anomaly maps from time 7 — 2 months to time 7 (in months),
between 0°-360° E and 55° S-60° N. The three-month-averaged Nino3.4
index from time 7 + 1 month to 7 + 23 months is used as a variable for the

FC layer
Convolutional MP layer 2 ~ Convolutional "
layer 2 layer 3 E
Output layer
. X N
/M 6| /M .| Nino3.4(+1
48— =g ¢ |(t = 1-23 months)
(mp,

output layer. The red boxes and lines highlight the convolutional filter and
convolutional process, respectively; and the blue box and lines indicate the
max-pooling window and the max-pooling process, respectively. M denotes
the number of feature maps, while N denotes the number of neurons in the
FC layer, which are set to be either 30 or 50 in this study. The global map is
generated in Matplotlib®!. The x and y dimensions of the map in each layer
are denoted (6, 12, 18, 24, 36, 72) next to the map.
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Fig. 2 | ENSO correlation skill in the CNN model. a, The all-season
correlation skill of the three-month-moving-averaged Nino3.4 index as a
function of the forecast lead month in the CNN model (red), SINTEX-F
dynamical forecast system (blue), and dynamical forecast systems included
in the North American Multi-Model Ensemble (NMME) project (the other
colours). The validation period is between 1984 and 2017. The shading

Correlation skill

around the lines for CNN, CanCM4 and SINTEX-F denotes the 95%
confidence interval, based on the bootstrap method. b, ¢, The correlation
skill of the Nino3.4 index targeted to each calendar month in the CNN
model (b) and the SINTEX-F dynamical forecast system (c). Hatching
highlights the forecasts with correlation skill exceeding 0.5.
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Fig. 3 | Physical interpretation of the CNN model ENSO forecasts.

a, Time series of DJF season Nino3.4 indexes for an 18-month-lead
forecast using the CNN model (red) and the SINTEX-F model (blue). The
observed Nino3.4 index is also shown (black). b, The heat map (shading),
and SST or heat content anomalies (contours; dashed contours denote the
negative values of SST or HC anomalies and solid contours denote the
positive values of SST or HC anomalies) for the MJ]J season in 1996 used

Heat map

for the prediction of the DJF season during the 1997/98 El Nino event.
Heat content anomalies (in units of °C) are shown over the tropical Pacific
(within the black box), while SST anomalies (in units of °C) are denoted
outside the tropical Pacific. Only the values with over 95% confidence
level based on Student’s t-test using the standard deviation of the heat map
during 1984-2017 are shaded. The global map is generated in Matplotlib".
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Fig. 4 | CNN forecast system for the prediction of El Nifio type. a, The
hit rate of the 12-month-lead prediction of El Nifo types (EP-type, CP-
type or mixed-type) during the DJF season using the CNN model and the
SINTEX-F model, and models in the NMME project, for the validation
period 1984-2017. The multi-model mean (MMM) of the hit rate is also
shown. The grey shading denotes the 95% confidence interval of the
random forecasts. b-e, The SST and 925-hPa wind-vector anomalies

for the NDJ (b), FMA (c), MJJ (d) and ASO (e) seasons during the El

Nino events when the area-averaged heat map value is greatest for the
EP-type El Nifo. f-i, As for panels b-e, but for the CP-type El Niio. The
numbers above each ocean basin box denote the El Nifio years selected for
drawing the anomalies in each basin, and for each type of El Nifo event.
The anomalies are visible only when the area-averaged heat map value

in any ocean basin exceeds one standard deviation for El Nifio events for
all ocean basins (see Extended Data Fig. 5 for details). The global map is
generated in Matplotlib3!.
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