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Baseball salary data: how would you stratify it?
Salary is color-coded from low (blue, green) to high (yellow,red)
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More details of the tree-building process

• In theory, the regions could have any shape. However, we
choose to divide the predictor space into high-dimensional
rectangles, or boxes, for simplicity and for ease of
interpretation of the resulting predictive model.

• The goal is to find boxes R1, . . . , RJ that minimize the
RSS, given by

J∑
j=1

∑
i∈Rj

(yi − ŷRj
)2,

where ŷRj
is the mean response for the training

observations within the jth box.
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Pruning a tree

• The process described above may produce good predictions
on the training set, but is likely to overfit the data, leading
to poor test set performance.Why?

• A smaller tree with fewer splits (that is, fewer regions
R1, . . . , RJ) might lead to lower variance and better
interpretation at the cost of a little bias.

• One possible alternative to the process described above is
to grow the tree only so long as the decrease in the RSS
due to each split exceeds some (high) threshold.

• This strategy will result in smaller trees, but is too
short-sighted: a seemingly worthless split early on in the
tree might be followed by a very good split — that is, a
split that leads to a large reduction in RSS later on.
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Summary of Tree Ensemble Methods
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观看“支持向量机”介绍视频
https://www.youtube.com/watch?v=Y6RRHw9uN9o
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Support Vector Machines

Here we approach the two-class classification problem in a
direct way:

We try and find a plane that separates the classes in
feature space.

If we cannot, we get creative in two ways:

• We soften what we mean by “separates”, and

• We enrich and enlarge the feature space so that separation
is possible.
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What is a Hyperplane?

• A hyperplane in p dimensions is a flat affine subspace of
dimension p− 1.

• In general the equation for a hyperplane has the form

β0 + β1X1 + β2X2 + . . .+ βpXp = 0

• In p = 2 dimensions a hyperplane is a line.

• If β0 = 0, the hyperplane goes through the origin,
otherwise not.

• The vector β = (β1, β2, · · · , βp) is called the normal vector
— it points in a direction orthogonal to the surface of a
hyperplane.

what is the distance between two parallel hyperplanes?

11 of 49



Hyperplane in 2 Dimensions
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Separating Hyperplanes
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• If f(X) = β0 + β1X1 + · · ·+ βpXp, then f(X) > 0 for points on
one side of the hyperplane, and f(X) < 0 for points on the other.

• If we code the colored points as Yi = +1 for blue, say, and
Yi = −1 for mauve, then if Yi · f(Xi) > 0 for all i, f(X) = 0
defines a separating hyperplane.

13 of 49



Maximal Margin Classifier
Among all separating hyperplanes, find the one that makes the
biggest gap or margin between the two classes.
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Constrained optimization problem

maximize
β0,β1,...,βp

M

subject to

p∑
j=1

β2
j = 1,

yi(β0 + β1xi1 + . . .+ βpxip) ≥M
for all i = 1, . . . , N.

This can be rephrased as a convex quadratic program, and
solved efficiently. The function svm() in package e1071 solves
this problem efficiently
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Non-separable Data
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The data on the left are
not separable by a linear
boundary.

This is often the case,
unless N < p.
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Noisy Data
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Sometimes the data are separable, but noisy. This can lead to a
poor solution for the maximal-margin classifier.

The support vector classifier maximizes a soft margin.
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Noisy Data
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Support Vector Classifier
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maximize
β0,β1,...,βp,ε1,...,εn

M subject to

p∑
j=1

β2
j = 1,

yi(β0 + β1xi1 + β2xi2 + . . .+ βpxip) ≥M(1− εi),

εi ≥ 0,
n∑
i=1

εi ≤ C,
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C is a regularization parameter
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Linear boundary can fail
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Sometime a linear bound-
ary simply won’t work,
no matter what value of
C.

The example on the left
is such a case.

What to do?

21 of 49



Feature Expansion

• Enlarge the space of features by including transformations;
e.g. X2

1 , X3
1 , X1X2, X1X

2
2 ,. . .. Hence go from a

p-dimensional space to a M > p dimensional space.

• Fit a support-vector classifier in the enlarged space.

• This results in non-linear decision boundaries in the
original space.

Example: Suppose we use (X1, X2, X
2
1 , X

2
2 , X1X2) instead of

just (X1, X2). Then the decision boundary would be of the form

β0 + β1X1 + β2X2 + β3X
2
1 + β4X

2
2 + β5X1X2 = 0

This leads to nonlinear decision boundaries in the original space
(quadratic conic sections).
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Cubic Polynomials
Here we use a basis
expansion of cubic poly-
nomials

From 2 variables to 9

The support-vector clas-
sifier in the enlarged
space solves the problem
in the lower-dimensional
space
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Nonlinearities and Kernels

• Polynomials (especially high-dimensional ones) get wild
rather fast.

• There is a more elegant and controlled way to introduce
nonlinearities in support-vector classifiers — through the
use of kernels.

• Before we discuss these, we must understand the role of
inner products in support-vector classifiers.
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寻找hyperplane的优化过程
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对偶问题

查看链接https://blog.csdn.net/chikily_yongfeng/article/details/105645955
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Inner products and support vectors

〈xi, xi′〉 =

p∑
j=1

xijxi′j — inner product between vectors

• The linear support vector classifier can be represented as

f(x) = β0 +

n∑
i=1

αi〈x, xi〉 — n parameters

• To estimate the parameters α1, . . . , αn and β0, all we need
are the

(
n
2

)
inner products 〈xi, xi′〉 between all pairs of

training observations.

It turns out that most of the α̂i can be zero:

f(x) = β0 +
∑
i∈S

α̂i〈x, xi〉

S is the support set of indices i such that α̂i > 0. [see slide 8]
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Kernels and Support Vector Machines

• If we can compute inner-products between observations, we
can fit a SV classifier. Can be quite abstract!

• Some special kernel functions can do this for us. E.g.

K(xi, xi′) =

1 +

p∑
j=1

xijxi′j

d

computes the inner-products needed for d dimensional
polynomials —

(
p+d
d

)
basis functions!

Try it for p = 2 and d = 2.

• The solution has the form

f(x) = β0 +
∑
i∈S

α̂iK(x, xi).
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Radial Kernel

K(xi, xi′) = exp(−γ
p∑
j=1

(xij − xi′j)2).

−4 −2 0 2 4

−
4

−
2

0
2

4

  

  

  

−4 −2 0 2 4

−
4

−
2

0
2

4

  

  

  

  

X1X1

X
2

X
2

f(x) = β0+
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α̂iK(x, xi)

Implicit feature space;
very high dimensional.

Controls variance by
squashing down most
dimensions severely

38 of 49



Example: Heart Data
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ROC curve is obtained by changing the threshold 0 to threshold
t in f̂(X) > t, and recording false positive and true positive
rates as t varies. Here we see ROC curves on training data.
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Example continued: Heart Test Data
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SVMs: more than 2 classes?

The SVM as defined works for K = 2 classes. What do we do if
we have K > 2 classes?

OVA One versus All. Fit K different 2-class SVM
classifiers f̂k(x), k = 1, . . . ,K; each class versus
the rest. Classify x∗ to the class for which f̂k(x

∗)
is largest.

OVO One versus One. Fit all
(
K
2

)
pairwise classifiers

f̂k`(x). Classify x∗ to the class that wins the most
pairwise competitions.

Which to choose? If K is not too large, use OVO.

41 of 49



SVMs: more than 2 classes?

The SVM as defined works for K = 2 classes. What do we do if
we have K > 2 classes?

OVA One versus All. Fit K different 2-class SVM
classifiers f̂k(x), k = 1, . . . ,K; each class versus
the rest. Classify x∗ to the class for which f̂k(x

∗)
is largest.

OVO One versus One. Fit all
(
K
2

)
pairwise classifiers

f̂k`(x). Classify x∗ to the class that wins the most
pairwise competitions.

Which to choose? If K is not too large, use OVO.

42 of 49



SVMs: more than 2 classes?

The SVM as defined works for K = 2 classes. What do we do if
we have K > 2 classes?

OVA One versus All. Fit K different 2-class SVM
classifiers f̂k(x), k = 1, . . . ,K; each class versus
the rest. Classify x∗ to the class for which f̂k(x

∗)
is largest.

OVO One versus One. Fit all
(
K
2

)
pairwise classifiers

f̂k`(x). Classify x∗ to the class that wins the most
pairwise competitions.

Which to choose? If K is not too large, use OVO.

43 of 49



SVMs: more than 2 classes?

The SVM as defined works for K = 2 classes. What do we do if
we have K > 2 classes?

OVA One versus All. Fit K different 2-class SVM
classifiers f̂k(x), k = 1, . . . ,K; each class versus
the rest. Classify x∗ to the class for which f̂k(x

∗)
is largest.

OVO One versus One. Fit all
(
K
2

)
pairwise classifiers

f̂k`(x). Classify x∗ to the class that wins the most
pairwise competitions.

Which to choose? If K is not too large, use OVO.

44 of 49



45 of 49



46 of 49



47 of 49



48 of 49



49 of 49


	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page



