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More details of the tree-building process

e In theory, the regions could have any shape. However, we
choose to divide the predictor space into high-dimensional
rectangles, or boxes, for simplicity and for ease of
interpretation of the resulting predictive model.

e The goal is to find boxes Ry, ..., R; that minimize the
RSS, given by

J
Z Z (yi — ZﬁR]—)Qa

j=1ieR;

where g, is the mean response for the training
observations within the jth box.
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Pruning a tree i E

The process described above may produce good predictions
on the training set, but is likely to overfit the data, leading
to poor test set performance. Why?

A smaller tree with fewer splits (that is, fewer regions
Ry, ..., Ry) might lead to lower variance and better
interpretation at the cost of a little bias.

One possible alternative to the process described above is
to grow the tree only so long as the decrease in the RSS
due to each split exceeds some (high) threshold.

This strategy will result in smaller trees, but is too
short-sighted: a seemingly worthless split early on in the
tree might be followed by a very good split — that is, a
split that leads to a large reduction in RSS later on.
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Summary of Tree Ensemble Methods

In bagging, the trees are grown independently on random samples of
the observations. Consequently, the trees tend to be quite similar to
each other. Thus, bagging can get caught in local optima and can fail
to thoroughly explore the model space.

In random forests, the trees are once again grown independently on
random samples of the observations. However, each split on each tree
is performed using a random subset of the features, thereby decorre-
lating the trees, and leading to a more thorough exploration of model
space relative to bagging.

In boosting, we only use the original data, and do not draw any ran-
dom samples. The trees are grown successively, using a “slow” learn-
ing approach: each new tree is fit to the signal that is left over from
the earlier trees, and shrunken down before it is used.

In BART, we once again only make use of the original data, and we
grow the trees successively. However, each tree is perturbed in order
to avoid local minima and achieve a more thorough exploration of
the model space.
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Support Vector Machines

Here we approach the two-class classification problem in a
direct way:

We try and find a plane that separates the classes in
feature space.

If we cannot, we get creative in two ways:
e We soften what we mean by “separates”, and

e We enrich and enlarge the feature space so that separation
is possible.



What is a Hyperplane?

A hyperplane in p dimensions is a flat affine subspaée of
dimension p — 1.

e In general the equation for a hyperplane has the form

Bo+ F1 X1+ faXo+ ...+ BpXp, =0

e In p = 2 dimensions a hyperplane is a line.

e If By = 0, the hyperplane goes through the origin,
otherwise not.

e The vector 8 = (1,02, -, Bp) is called the normal vector
— it points in a direction orthogonal to the surface of a
hyperplane.

what is the distance between two parallel hyperplanes?
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Separating Hyperplanes

o If f(X)=00+FX1+- -+ 5pX,, then f(X) > 0 for points on
one side of the hyperplane, and f(X) < 0 for points on the other.

e If we code the colored points as Y; = +1 for blue, say, and
Y; = —1 for mauve, then if ¥; - f(X;) > 0 for all ¢, f(X) =0
defines a separating hyperplane.



Maximal Margin Classifier

Among all separating hyperplanes, find the one that makes the
biggest gap or margin between the two classes.

Constrained optimization problem

maximize M
Bo,B1s--,Bp

P
subject to Zﬁf =1,

j=1
vi(Bo + Brzin + .. + Bpip) > M
forall i=1,...,N.

1
X



Maximal Margin Classifier

Among all separating hyperplanes, find the one that makes the
biggest gap or margin between the two classes.

Constrained optimization problem

maximize M
Bo,B1s--,Bp

P
subject to Zﬁf =1,

j=1
vi(Bo + Brzin + .. + Bpip) > M
forall i=1,...,N.

-1 0 1 2 3
Xy

This can be rephrased as a convex quadratic program, and
solved efficiently. The function svm() in package 1071 solves
this problem efficiently



Non-separable Data

The data on the left are
not separable by a linear
boundary.

This is often the -case,
unless NV < p.



Noisy Data
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Sometimes the data are separable, but noisy. This can lead to a
poor solution for the maximal-margin classifier.



Noisy Data

Xo
;
|
Xy
;

Xi Xi

Sometimes the data are separable, but noisy. This can lead to a
poor solution for the maximal-margin classifier.

The support vector classifier maximizes a soft margin.



Support Vector Classifier

P
maximize M subject to E ]2— ,
B0osB1se-,Bpr€1;--€n

Yi(Bo + Brwi1 + Patiz + ... + 5p5€zp) M(1—¢),

n
€>0, > 6<C,

=1



C' is a regularization parameter
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Linear boundary can fail

Sometime a linear bound-
ary simply won’t work,
no matter what value of

C.

The example on the left
is such a case.

What to do?




Feature Expansion

e Enlarge the space of features by including transformations;
e.g. X2, X3, X1Xo, X1X2,.... Hence go from a
p-dimensional space to a M > p dimensional space.

e Fit a support-vector classifier in the enlarged space.

e This results in non-linear decision boundaries in the
original space.



Feature Expansion

e Enlarge the space of features by including transformations;
e.g. X2, X3, X1Xo, X1X2,.... Hence go from a
p-dimensional space to a M > p dimensional space.

e Fit a support-vector classifier in the enlarged space.

e This results in non-linear decision boundaries in the
original space.

Example: Suppose we use (X1, X2, X7, X2, X;1X>) instead of
just (X1, X5). Then the decision boundary would be of the form

Bo + B X1 + BoXo + B3 X7 + BaX5 + B X1 X2 =0

This leads to nonlinear decision boundaries in the original space
(quadratic conic sections).



Cubic Polynomials

Here we wuse a basis
expansion of cubic poly-
nomials

From 2 variables to 9

X

The support-vector clas-
sifier in the enlarged
space solves the problem
in the lower-dimensional
space




Cubic Polynomials

Here we wuse a basis
expansion of cubic poly-
nomials

From 2 variables to 9

The support-vector clas-
sifier in the enlarged
space solves the problem
in the lower-dimensional
space

Bo+L1X1+ B2 X+ B3 X2 +84 X3+ 5 X1 Xo+B6 X3 +B87 X5+ X1 X5 +Bo X7 X2 =0

12/21
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This data becomes linearly separable after a quadratic transformation to 2-dimensions.
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Nonlinearities and Kernels

e Polynomials (especially high-dimensional ones) get wild
rather fast.

e There is a more elegant and controlled way to introduce
nonlinearities in support-vector classifiers — through the
use of kernels.

e Before we discuss these, we must understand the role of
wmmner products in support-vector classifiers.
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Equation 5-9. Kernel trick for a 2"-degree polynomial mapping

2 \T 2
@q b,
@7 ¢b) =|V2aa,| -|V2bb, = a,’b,” +2a,b,a.b, + a)’b,’
2 2
&) b,
T 2
a b
2 1 1 T 2
= (a\by + ayby)" = a, : b, —(a 'b)

On the left-hand side, we have the dot product of the transformed feature vectors, which is equal to our 2nd-
degree polynomial kernel function.



= Solution of the dual problem gives us:

w = Z a;yx,
Inner products and s . e decision bsindary:
Wox+w, = > @iy (x[x)+w,
= The decision: L
y=sign | > aiy(x/x)+ u‘,,:}
l.“ xz E xlﬂ Ty j — Jnner " Mapping to a feature space, we have the decision:

y = sign {Z a;y,($(x) ¢(x,) + u'“}
ies

e The linear support vector classifier can be represented as

f(x) = po+ Z ai{x,z;) — n parameters

e To estimate the parameters aq,...,a, and §y, all we need
are the (g) inner products (z;, x;) between all pairs of
training observations.

It turns out that most of the &; can be zero:
f@) = o+ 3 dulw, i)
€S
S is the support set of indices i such that &; > 0. [sce slide §]



Kernels and Support Vector Machines

e If we can compute inner-products between observations, we
can fit a SV classifier. Can be quite abstract!
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e If we can compute inner-products between observations, we
can fit a SV classifier. Can be quite abstract!

e Some special kernel functions can do this for us. E.g.
d
K(zj,zp)= |1+ Z:U”x”

computes the inner-products needed for d dimensional
polynomials — (pj;d) basis functions!



Kernels and Support Vector Machines

e If we can compute inner-products between observations, we
can fit a SV classifier. Can be quite abstract!

e Some special kernel functions can do this for us. E.g.
d
K(zj,zp)= |1+ Zx”x”

computes the inner-products needed for d dimensional
polynomials — (pj;d) basis functions!
Try it forp =2 and d = 2.



Kernels and Support Vector Machines

e If we can compute inner-products between observations, we
can fit a SV classifier. Can be quite abstract!

e Some special kernel functions can do this for us. E.g.
d
K(zj,zp)= |1+ Z:U”x”

computes the inner-products needed for d dimensional
polynomials — (pj;d) basis functions!
Try it forp =2 and d = 2.

e The solution has the form

BO“’ZOQ $-Tz

€S



Radial Kernel

(zij — zir5)?).
1

p
K(z;,xy) = exp(—y

J

o f@) =Botd | QK (z,2;)
| ieS

Implicit feature space;

| very high dimensional.

| Controls  variance by
| squashing down most
| dimensions severely




Example: Heart Data
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ROC curve is obtained by changing the threshold 0 to threshold
tin f(X) > t, and recording false positive and true positive
rates as t varies. Here we see ROC curves on training data.



0.6 0.8

True positive rate
0.4

0.2

0.0

Example continued: Heart Test Data
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SVMs: more than 2 classes?

The SVM as defined works for K = 2 classes. What do we do if
we have K > 2 classes?
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The SVM as defined works for K = 2 classes. What do we do if
we have K > 2 classes?
OVA One versus All. Fit K different 2-class SVM
classifiers fk (z), k=1,..., K; each class versus
the rest. Classify z* to the class for which f; (z*)
is largest.
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The SVM as defined works for K = 2 classes. What do we do if
we have K > 2 classes?

OVA One versus All. Fit K different 2-class SVM

classifiers fk (z), k=1,...,K; each class versus
the rest. Classify z* to the class for which f(z*)
is largest.

OVO One versus One. Fit all (12{) pairwise classifiers

fre(x). Classify 2* to the class that wins the most
pairwise competitions.



SVMs: more than 2 classes?

The SVM as defined works for K = 2 classes. What do we do if
we have K > 2 classes?

OVA One versus All. Fit K different 2-class SVM

classifiers fk (z), k=1,...,K; each class versus
the rest. Classify z* to the class for which f(z*)
is largest.

OVO One versus One. Fit all (12{) pairwise classifiers
fre(x). Classify 2* to the class that wins the most
pairwise competitions.

Which to choose? If K is not too large, use OVO.
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The feature vectors are crucial factors for SVM to exhi-
bit relatively high accuracy. Considering the fact that
increasing dimension of feature space without increasing
the useful information reduces the accuracy (Shahrisvand
and Akhoondzadeh, 2013), some spectra and several spec-
tral combinations obtained from some traditional methods
were enlisted as the candidate feature vectors. They were
B3, B6, B7, B20, B29, B31, B32, (B7 — B3)/(B7 + B3),
B20 — B31, B29 — B31, B20 — B29, B32 — B3I, and
B31/B32 of MODIS LI. The spectral range of each band
is shown in Table 3. A trial-and-error procedure was con-
ducted to define the optimal spectral combinations that
were finally accepted as the feature vectors of SVM, ie.,
we applied different spectral combinations with different
number of bands to the SVM classifier and compared the
classification precision to find the relatively best spectral
combination. We choose the radial basis function (RBF)
to perform the classification. The trial-and-error procedure
demonstrated that the variation of C and vy revealed almost
the same results when they were limited in a relatively large
range (C > 0.15, y < 0.1). Consequently, we set the value of
regularization parameter (C) and gamma (y) in kernel func-
tion as commonly used 1.0 and 0.07 respectively, while C
(0.25) and vy (0.0078) are also utilized in the dust aerosol
detection based on the SVM method using CALIPSO data
(Ma and Gong, 2012).
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Flg 4 Commnmn Bl st ol lru«:colonmdgﬂand SVM results. (a). (¢). (¢) and (g) are true color for the Arabian Desert on 1§ March
 on 9 March 2013, Taklimakan Dese 3 April 2017 and Gobi Desert on 10 April 2006 respectively: (b). (d). (f) and (h) are for
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