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Support Vector Machines

Here we approach the two-class classification problem in a
direct way:

We try and find a plane that separates the classes in
feature space.

If we cannot, we get creative in two ways:
e We soften what we mean by “separates”, and

e We enrich and enlarge the feature space so that separation
is possible.
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Support Vector Classifier
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Feature Expansion

e Enlarge the space of features by including transformations;
e.g. X2, X3, X1Xo, X1X2,.... Hence go from a
p-dimensional space to a M > p dimensional space.

e Fit a support-vector classifier in the enlarged space.

e This results in non-linear decision boundaries in the
original space.

Example: Suppose we use (X1, X2, X7, X2, X;1X>) instead of
just (X1, X5). Then the decision boundary would be of the form

Bo + B X1 + BoXo + B3 X7 + BaX5 + B X1 X2 =0

This leads to nonlinear decision boundaries in the original space
(quadratic conic sections).
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Equation 5-9. Kernel trick for a 2"-degree polynomial mapping
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On the left-hand side, we have the dot product of the transformed feature vectors, which is equal to our 2nd-
degree polynomial kernel function.
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Radial Kernel
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Implicit feature space;
very high dimensional.

Controls  variance by
squashing down most
dimensions severely
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Deep Learning

Neural networks became popular in the 1980s.

Lots of successes, hype, and great conferences: NeurIPS,
Snowbird.

AAAL Conference on Artificial Intelligence AAAL
S8 A1

International Joint Conference on Artificial Inte Iligence HCAl

Annual Conference on Neural Information Processing Svstems NeurlPS
PLB%¥S | Intemational Conference on Machine Learning 1CML
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Deep Learning

Neural networks became popular in the 1980s.
Lots of successes, hype, and great conferences: NeurlPS,
Snowbird.

Then along came SVMs, Random Forests and Boosting in the
1990s, and Neural Networks took a back seat.

Re-emerged around 2010 as Deep Learning.
By 2020s very dominant and successful.

Part of success due to vast improvements in computing power,
larger training sets, and software: Tensorflow and PyTorch.

Much of the credit goes to three pioneers and
their students: Yann LeCun, Geoffrey Hinton
and Yoshua Bengio, who received the 2019
ACM Turing Award for their work in Neural
Networks.




Single Layer Neural Network
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Details
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o Ap = hi(X) = g(wgo + Z?Zl wy; X;) are called the
activations in the hidden layer.



Details

7 sigmoid
— RelU

00 02 04 06 08 10

T T T T
-4 -2 0 2 4

o Ap = hi(X) = g(wgo + Zé’:l wy; X;) are called the
activations in the hidden layer.

® g(z) is called the activation function. Popular are the
sigmoid and rectified linear, shown in figure.
1

1+e®

sigmoid: o(x) =

z+ |z| g itz >0,
ReLlU: f(z) = 2" =max(0,z) = 2 - {0 otherwise
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e Activation functions in hidden layers are typically
nonlinear, otherwise the model collapses to a linear model.



Details

7 sigmoid
— RelU

00 02 04 06 08 10

T T T T
-4 -2 0 2 4

A = hi(X) = glwgo + Zé’:l wy; X;) are called the
activations in the hidden layer.

g(z) is called the activation function. Popular are the
sigmoid and rectified linear, shown in figure.

Activation functions in hidden layers are typically
nonlinear, otherwise the model collapses to a linear model.
So the activations are like derived features — nonlinear
transformations of linear combinations of the features.



Details

7 sigmoid
— RelU

00 02 04 06 08 10
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A = hi(X) = glwgo + Z?:l wy; X;) are called the
activations in the hidden layer.

g(z) is called the activation function. Popular are the
sigmoid and rectified linear, shown in figure.

Activation functions in hidden layers are typically
nonlinear, otherwise the model collapses to a linear model.
So the activations are like derived features — nonlinear
transformations of linear combinations of the features.
The model is fit by minimizing 327, (y; — f(z;))? (e.g. for
regression).



Optimization Algorithm

Epoch: The number of times the algorithm runs over the whole
training dataset

Sample: A subset of dataset

Batch: It denotes the number of records to be considered for
updating the model parameters

Learning Rate: It is a parameter that provides the model a scale of
how much model weights should be updated

Cost / Loss Function: A cost function is used to calculate the cost,
which is the difference between the predicted value and actual value

Weights/Bias: The learnable parameters in a model that controls
the signal between two neurons



Gradient Descent
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Gradient Descent Update Rule
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Batch Gradient Descent Mini-Batch Gradient Descent

@

all training sample small random subset
Stochastic Gradient Descent each epo ch

each epoch

one random training
sample each epoch
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See another PPT

Mini-Batch Gradient Descent




Backpropagation Algorithm

Shree K. Nayar

Columbia University




Example: MNIST Digits

011349567 %9 Handwritten digits

Ol 2% =279 98x 08 grayscale images
OV R 14567 849 60K train, 10K test images
0/ 234579 Teatures are the 784 pixel

grayscale values € (0,255)
Labels are the digit class 0-9

® Goal: build a classifier to predict the image class.

e We build a two-layer network with 256 units at first layer,
128 units at second layer, and 10 units at output layer.

¢ Along with intercepts (called biases) there are 235,146
parameters (referred to as weights)
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Details of Output Layer
® Let Zm = Bmo + 02 BeAl?, m =0,1,...,9 be 10 lincar
combinations of activations at second layer.

® Qutput activation function encodes the softmaz function

€Zm

m(X)=Pr(Y =m|X)= ————.
) = PrY =) = 5



Details of Output Layer

Let Zm = Bmo + 202 BueAP), m =0,1,...,9 be 10 linear
combinations of activations at second layer.

Output activation function encodes the softmaz function

€Zm

m(X)=Pr(Y =m|X)= ————.
) = PrY =) = 5

We fit the model by minimizing the negative multinomial
log-likelihood (or cross-entropy):

n 9
- Z Z Yim 1og(fm(2:))-

i=1 m=0

Yim is 1 if true class for observation i is m, else 0 — i.e.
one-hot encoded.



Results

Method Test Error
Neural Network + Ridge Regularization 2.3%
Neural Network + Dropout Regularization 1.8%
Multinomial Logistic Regression 7.2%
Linear Discriminant Analysis 12.7%

® Early success for neural networks in the 1990s.

e With so many parameters, regularization is essential.

® Some details of regularization and fitting will come later.



Results

Method Test Error
Neural Network + Ridge Regularization 2.3%
Neural Network + Dropout Regularization 1.8%
Multinomial Logistic Regression 7.2%
Linear Discriminant Analysis 12.7%

Farly success for neural networks in the 1990s.
With so many parameters, regularization is essential.
Some details of regularization and fitting will come later.

Very overworked problem — best reported rates are
< 0.5%!

Human error rate is reported to be around 0.2%, or 20 of
the 10K test images.



Convolutional Neural Network — CNN

® Major success story for classifying images.

® Shown are samples from CIFAR100 database. 32 x 32 color
natural images, with 100 classes.

® 50K training images, 10K test images.
Each image is a three-dimensional array or feature map:

32 x 32 x 3 array of 8-bit numbers. The last dimension
represents the three color channels for red, green and blue.



How CNNs Work

® The CNN builds up an image in a hierarchical fashion.
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How CNNs Work

® The CNN builds up an image in a hierarchical fashion.

® Edges and shapes are recognized and pieced together to
form more complex shapes, eventually assembling the
target image.

® This hierarchical construction is achieved using convolution
and pooling layers.



Convolution Filter

Convolution Filter = {a 5] .
v 6

Input Image =

~ =L 0
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Convolved Image = |da+eB+ gy+ hd ea+ fB8+ hy+id

ac+bB+dy+ed ba+cB+ey+ fo
ga+hB+jy+kd ha+if+ky+16

The filter is itself an image, and represents a small shape,
edge etc.

We slide it around the input image, scoring for matches.
The scoring is done via dot-products, illustrated above.

If the subimage of the input image is similar to the filter,
the score is high, otherwise low.

The filters are learned during training.
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® The idea of convolution with a filter is to find common
patterns that occur in different parts of the image.
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® Since images have three colors channels, the filter does as
well: one filter per channel, and dot-products are summed.



Convolution Example

The idea of convolution with a filter is to find common
patterns that occur in different parts of the image.

The two filters shown here highlight vertical and horizontal
stripes.

® The result of the convolution is a new feature map.

® Since images have three colors channels, the filter does as
well: one filter per channel, and dot-products are summed.
The weights in the filters are learned by the network.



Pooling

1 2 5 3

301 2 3 5
Max pool 9 1 3 4 — [2 4]

11 2 0

Each non-overlapping 2 x 2 block is replaced by its
maximum.

This sharpens the feature identification.
Allows for locational invariance.

Reduces the dimension by a factor of 4 — i.e. factor of 2 in
each dimension.



Architecture of a CNN
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Architecture of a CNN

16
32
32 16 r
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® Many convolve + pool layers.
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Architecture of a CNN
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convolve

® Many convolve + pool layers.

e Filters are typically small, e.g. each channel 3 x 3.
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Architecture of a CNN
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® Many convolve + pool layers.
e Filters are typically small, e.g. each channel 3 x 3.

e FEach filter creates a new channel in convolution layer.



Architecture of a CNN
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® Many convolve + pool layers.

Filters are typically small, e.g. each channel 3 x 3.

Each filter creates a new channel in convolution layer.

As pooling reduces size, the number of filters/channels is
typically increased.



Architecture of a CNN

8
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-
pool convolve convolve . flatten
convolve

® Many convolve + pool layers.

e Filters are typically small, e.g. each channel 3 x 3.

e FEach filter creates a new channel in convolution layer.

¢ As pooling reduces size, the number of filters/channels is
typically increased.

e Number of layers can be very large. E.g. resnet50 trained
on imagenet 1000-class image data base has 50 layers!



Using Pretrained Networks to Classify Images




Using Pretrained Networks to Classify Images

flamingo Cooper’s hawk Cooper’s hawk
flamingo 0.83 | kite (raptor) 0.60 | fountain 0.35
spoonbill 0.17 | great grey owl 0.09 | nail 0.12
white stork 0.00 | robin 0.06 | hook 0.07

Lhasa Apso cat Cape weaver

Tibetan terrier  0.56 | Old English sheepdog 0.82 | jacamar  0.28
Lhasa 0.32 | Shih-Tzu 0.04 | macaw 0.12
cocker spaniel 0.03 | Persian cat 0.04 | robin 0.12

Here we use the 50-layer resnet50 network trained on the 1000-class
imagenet corpus to classify some photographs.
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——NTC Observation Range across CNN Ensemble
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Figure 2. Time-series of seasonal mean number of TC (NTC) for () global (defined as the sum of individual ocean basins), (b) NAT, () ENP, (d), WNP, (¢) NIO, (f)
SIO. (g) SPO and (h) SAT. Observed NTC is shown in black line. Ensemble mean CNN emulated and LOOCYV results are shown in blue and gray lines, respectively.
Ranges across CNN ensembles are shown in shadings. Numbers shown in each panel denote the Pearson correlation coefficients and root mean square errors (RMSE)
between observation and CNN model results. Leave-one-out cross validation (LOOCV) results are listed in the parentheses.
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Figure 5. Occlusion sensitivity maps that highlight the relative importance in emulating seasonal NTC in different ocean basins. (a—d): Relative importance of SST,
saturation deficit (SD). 850 hPa vorticity and vertical wind shear in NIO, respectively. (e-h). (i-1), (m-p). (q—t). And (u-x) are similar, but for the relative importance
of 4 variables in WNP, ENP, NAT, SIO, and SPO., respectively. Arcas in the map with higher values correspond o regions of input variables that contribute more
significantly to impact the CNN prediction skills. Intuitively, the sensitivity map shows which area most affect the prediction RMSE when changed. Refer main text for
details.
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Figure 11. Time-

s of CNN_SD emulated anomalous NTC for (a) global, (b) Northern Hemisphere and (c) Southern Hemisphere integration with the large-scale
environmental conditions projected by 36 different Coupled Model Intercomparison Project (CMIP6) model under historical forcing and shared socio-economic
pathway 5-8.5 (SSPS85). Anomalics are computed as the departures from their 1980-1999 climatology. Black lines denote observation during 19802020, thick dark
blue lines denote the multi-model mean of the CMIPS models, and thin light blue fines denote the individual 36 CMIP6 model. Lincar trends during 1980-2100 are
plotted in magenta and listed in each panel; following by the fraction demonstrating number of individual models showing consistent sign of trend as to the multi-model
‘mean. For example, 35 of 36 CMIP6 model project a decreasing trend with the mean trend of ~0.17 per year emulated by the CNN_SD model. Note that, all

‘multi-model mean linear trends are significant at 95% confidence level based on the Mann-Kendall trend test. (e-f) Are similar, but for the CNN_CRH emulated NTC
projection.
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