
Support Vector Machines

Here we approach the two-class classification problem in a
direct way:

We try and find a plane that separates the classes in
feature space.

If we cannot, we get creative in two ways:

• We soften what we mean by “separates”, and

• We enrich and enlarge the feature space so that separation
is possible.
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Support Vector Classifier
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β0,β1,...,βp,ε1,...,εn

M subject to

p∑
j=1

β2
j = 1,

yi(β0 + β1xi1 + β2xi2 + . . .+ βpxip) ≥M(1− εi),

εi ≥ 0,
n∑
i=1

εi ≤ C,
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对偶问题

查看链接https://blog.csdn.net/chikily_yongfeng/article/details/105645955

SMO序列最小优化算法
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Feature Expansion

• Enlarge the space of features by including transformations;
e.g. X2

1 , X3
1 , X1X2, X1X

2
2 ,. . .. Hence go from a

p-dimensional space to a M > p dimensional space.

• Fit a support-vector classifier in the enlarged space.

• This results in non-linear decision boundaries in the
original space.

Example: Suppose we use (X1, X2, X
2
1 , X

2
2 , X1X2) instead of

just (X1, X2). Then the decision boundary would be of the form

β0 + β1X1 + β2X2 + β3X
2
1 + β4X

2
2 + β5X1X2 = 0

This leads to nonlinear decision boundaries in the original space
(quadratic conic sections).
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Radial Kernel

K(xi, xi′) = exp(−γ
p∑
j=1

(xij − xi′j)2).
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f(x) = β0+
∑
i∈S

α̂iK(x, xi)

Implicit feature space;
very high dimensional.

Controls variance by
squashing down most
dimensions severely

上节课回顾

6 of 51



Deep Learning

Neural networks became popular in the 1980s.
Lots of successes, hype, and great conferences: NeurIPS,
Snowbird.

Then along came SVMs, Random Forests and Boosting in the
1990s, and Neural Networks took a back seat.

Re-emerged around 2010 as Deep Learning.
By 2020s very dominant and successful.

Part of success due to vast improvements in computing power,
larger training sets, and software: Tensorflow and PyTorch.

Much of the credit goes to three pioneers and
their students: Yann LeCun, Geoffrey Hinton
and Yoshua Bengio, who received the 2019
ACM Turing Award for their work in Neural
Networks.
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Single Layer Neural Network

f(X) = β0 +
∑K

k=1 βkhk(X)

= β0 +
∑K

k=1 βkg(wk0 +
∑p

j=1wkjXj).
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Details
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• Ak = hk(X) = g(wk0 +
∑p

j=1wkjXj) are called the
activations in the hidden layer.

• g(z) is called the activation function. Popular are the
sigmoid and rectified linear, shown in figure.

• Activation functions in hidden layers are typically
nonlinear, otherwise the model collapses to a linear model.

• So the activations are like derived features — nonlinear
transformations of linear combinations of the features.

• The model is fit by minimizing
∑n

i=1 (yi − f(xi))
2 (e.g. for

regression).
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Optimization Algorithm

Epoch: The number of times the algorithm runs over the whole 
training dataset

Sample: A subset of dataset

Batch: It denotes the number of records to be considered for 
updating the model parameters

Learning Rate: It is a parameter that provides the model a scale of 
how much model weights should be updated

Cost / Loss Function: A cost function is used to calculate the cost , 
which is the difference between the predicted value and actual value

Weights/Bias: The learnable parameters in a model that controls 
the signal between two neurons
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Gradient Descent

Backpropagation
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all training sample 
each epoch 

one random training 
sample each epoch

small random subset 
each epoch
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Example: MNIST Digits

Handwritten digits
28× 28 grayscale images
60K train, 10K test images
Features are the 784 pixel
grayscale values ∈ (0, 255)
Labels are the digit class 0–9

• Goal: build a classifier to predict the image class.

• We build a two-layer network with 256 units at first layer,
128 units at second layer, and 10 units at output layer.

• Along with intercepts (called biases) there are 235,146
parameters (referred to as weights)
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Details of Output Layer

• Let Zm = βm0 +
∑K2

`=1 βm`A
(2)
` , m = 0, 1, . . . , 9 be 10 linear

combinations of activations at second layer.

• Output activation function encodes the softmax function

fm(X) = Pr(Y = m|X) =
eZm∑9
`=0 e

Z`
.

• We fit the model by minimizing the negative multinomial
log-likelihood (or cross-entropy):

−
n∑
i=1

9∑
m=0

yim log(fm(xi)).

• yim is 1 if true class for observation i is m, else 0 — i.e.
one-hot encoded.
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Results

Method Test Error

Neural Network + Ridge Regularization 2.3%
Neural Network + Dropout Regularization 1.8%
Multinomial Logistic Regression 7.2%
Linear Discriminant Analysis 12.7%

• Early success for neural networks in the 1990s.

• With so many parameters, regularization is essential.

• Some details of regularization and fitting will come later.

• Very overworked problem — best reported rates are
< 0.5%!

• Human error rate is reported to be around 0.2%, or 20 of
the 10K test images.
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Convolutional Neural Network — CNN

• Major success story for classifying images.

• Shown are samples from CIFAR100 database. 32× 32 color
natural images, with 100 classes.

• 50K training images, 10K test images.

Each image is a three-dimensional array or feature map:
32× 32× 3 array of 8-bit numbers. The last dimension

represents the three color channels for red, green and blue.
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How CNNs Work

• The CNN builds up an image in a hierarchical fashion.

• Edges and shapes are recognized and pieced together to
form more complex shapes, eventually assembling the
target image.

• This hierarchical construction is achieved using convolution
and pooling layers.
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Convolution Filter

Input Image =


a b c
d e f
g h i
j k l

 Convolution Filter =

[
α β
γ δ

]
.

Convolved Image =

aα+ bβ + dγ + eδ bα+ cβ + eγ + fδ
dα+ eβ + gγ + hδ eα+ fβ + hγ + iδ
gα+ hβ + jγ + kδ hα+ iβ + kγ + lδ


• The filter is itself an image, and represents a small shape,

edge etc.

• We slide it around the input image, scoring for matches.

• The scoring is done via dot-products, illustrated above.

• If the subimage of the input image is similar to the filter,
the score is high, otherwise low.

• The filters are learned during training.
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Convolution Example

• The idea of convolution with a filter is to find common
patterns that occur in different parts of the image.

• The two filters shown here highlight vertical and horizontal
stripes.

• The result of the convolution is a new feature map.
• Since images have three colors channels, the filter does as

well: one filter per channel, and dot-products are summed.
• The weights in the filters are learned by the network.
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Pooling

Max pool


1 2 5 3
3 0 1 2
2 1 3 4
1 1 2 0

→ [
3 5
2 4

]

• Each non-overlapping 2× 2 block is replaced by its
maximum.

• This sharpens the feature identification.

• Allows for locational invariance.

• Reduces the dimension by a factor of 4 — i.e. factor of 2 in
each dimension.
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Architecture of a CNN
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• Many convolve + pool layers.

• Filters are typically small, e.g. each channel 3× 3.

• Each filter creates a new channel in convolution layer.

• As pooling reduces size, the number of filters/channels is
typically increased.

• Number of layers can be very large. E.g. resnet50 trained
on imagenet 1000-class image data base has 50 layers!
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Using Pretrained Networks to Classify Images

flamingo Cooper’s hawk Cooper’s hawk
flamingo 0.83 kite (raptor) 0.60 fountain 0.35
spoonbill 0.17 great grey owl 0.09 nail 0.12
white stork 0.00 robin 0.06 hook 0.07

Lhasa Apso cat Cape weaver
Tibetan terrier 0.56 Old English sheepdog 0.82 jacamar 0.28
Lhasa 0.32 Shih-Tzu 0.04 macaw 0.12
cocker spaniel 0.03 Persian cat 0.04 robin 0.12

Here we use the 50-layer resnet50 network trained on the 1000-class
imagenet corpus to classify some photographs.
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