T[] JB
SR Architecture of a CNN

8
16
32 8 4
L 16 'TT- I
IT- :
: Ty V)
I- or
-
pool convolve convolve . flatten
convolve

® Many convolve + pool layers.

e Filters are typically small, e.g. each channel 3 x 3.
e FEach filter creates a new channel in convolution layer.

¢ As pooling reduces size, the number of filters/channels is
typically increased.

e Number of layers can be very large. E.g. resnet50 trained
on imagenet 1000-class image data base has 50 layers!

10f72

TR E

1. Prepare training and test data

(cifar_train,
cifar_test) = [CIFAR100(root="data",
train=train,
download=True)
for train in [True, False]]

Files already downloaded and verified
Files already downloaded and verified

transform = ToTensor()

cifar_train_X = torch.stack([transform(x) for x in
cifar_train.datal)

cifar_test_X = torch.stack([transform(x) for x in
cifar_test.datal)

cifar_train = TensorDataset(cifar_train_X,
torch.tensor(cifar_train.targets))

cifar_test = TensorDataset(cifar_test_X,
torch.tensor(cifar_test.targets))

The CIFAR100 dataset consists of 50,000 training images, each represented b
standardize as we did for the digits, but keep the array structure. This is accomg

Creating the data module is similar to the MNIST example.

cifar_dm = SimpleDataModule(cifar_train,
cifar_test,
validation=0.2,
num_workers=max_num_workers,
batch_size=128)

20f72

bR B R 2. Specify CNN architecture

class BuildingBlock(nn.Module):

def _init_ (self,
in_channetls,
out_channels):

super (BuildingBlock, self).__init_ ()

self.conv = nn.Conv2d(in_channels=in_channels,
out_channels=out_channels,
kernel_size=(3,3),
padding="same")

self.activation = nn.ReLU()

self.pool = nn.MaxPool2d(kernel_size=(2,2))

def forward(self, x):
return self.pool(self.activation(self.conv(x)))

Notice that we used the padding = "same" argumentto nn.Conv2d() ,w
channels in the input layer. We use a 3 x 3 convolution filter for each channel it

In forming our deep learning model for the CIFAR100 data, we use several of
can be combined in other modules. Ultimately, everything is fit by a generic trai

class CIFARModel(nn.Module):

def _init_ (self):
super (CIFARModel, self).__init_ ()
sizes = [(3,32),
(32,64),
(64,128),
(128,256)]
self.conv = nn.Sequential([BuildingBlock(in_, out_)
for in_, out_ in sizes])

self.output = nn.Sequential(nn.Dropout(0.5),
nn.Linear(2#2256, 512),
nn.ReLU(),
nn.Linear(512, 100))

def forward(self, x):

val = self.conv(x)

val = torch.flatten(val, start_dim=1)

return self.output(val)

30f72

TR R
3. Fit the parameters in CNN

cifar_optimizer = RMSprop(cifar_model.parameters(), 1r=0.001)
cifar_module = SimpleModule.classification(cifar_model,
num_classes=100,
optimizer=cifar_optimizer)
cifar_logger = CSVLogger('logs', name='CIFAR100')

cifar_trainer = Trainer(deterministic=True,
max_epochs=30,
logger=cifar_logger,
enable_progress_bar=False,
callbacks=[ErrorTracker()])
cifar_trainer.fit(cifar_module,
datamodule=cifar_dm)

4 0of 72

TR E R

Homework 2 (deadline: Oct. 31)

The Goal of this Homework:

Use Convolutional Neural Network (CNN) and several meteorological fields to predict monthly pre-
cipitation rate over the Beijing region. Specifically, you need to predict the monthly precipitation rate
during 2021-2023 over the Beijing region (111E-121E, 35N-45N). Hint: you can improve the prediction
skill either through the input meteorological field data or CNN configuration.

Homework Requirement:

1) understand the example python code,

2) do your best to improve the prediction skill by reducing RMSE value in the end of the code,

3) write down your investigation about this problem and explain your ideas why your method would
improve the prediction.

Please also note that

1) you can find an example python script and meteorological field data in the homework [older,

2) you can choose to download other meteorological field data from the ERA5 website (monthly/hourly,

pressure levels/single level). To download data, you have to first register this website, click “Download”

button, Select “Reanalysis”, Variable, Year, Month, Geographical area and so on. It is recommended

to pick “NetCDF4 (Experimental)” data format so that you can read the data by import netCDF4 in

python. Several useful datasets arc listed below,
https://cds.climate.copernicus.cu/datasets/reanaly:
https://cds.climate.copernicus.cu/datasets/reanaly: ra5-single-levels-monthly-means?tab=overview
https:/ /cds.climate.copernicus.cu/datasets/reanal \5-pressure-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels ?tab=overview

3) Your training data should not include precipitation data during 2021-2023 over the Beijing region,

4) You should only use the variable mtpr in “mtpr_ ERA5.nc¢” as your target data,

5) Please do not change the seed value, seed_everything(0, workers=True), in the python code,

6) Besides, those who get the best results (the lowest RMSE) in a reasonable way will receive a small

gift as a reward.

srab-pressure-levels-monthly-means?tab=overview

50f 72

Document Classification: IMDB Movie Reviews

The IMDB corpus consists of user-supplied movie ratings for a
large collection of movies. Each has been labeled for sentiment
as positive or negative. Here is the beginning of a negative
review:

This has to be one of the worst films of the 1990s. When my friends
& T were watching this film (being the target audience it was aimed at)
we just sat & watched the first half an hour with our jaws touching the
floor at how bad it really was. The rest of the time, everyone else in the
theater just started talking to each other, leaving or generally crying
into their popcorn ...

We have labeled training and test sets, each consisting of 25,000
reviews, and each balanced with regard to sentiment.

6 0f 72

Document Classification: IMDB Movie Reviews

The IMDB corpus consists of user-supplied movie ratings for a
large collection of movies. Each has been labeled for sentiment
as positive or negative. Here is the beginning of a negative
review:

This has to be one of the worst films of the 1990s. When my friends
& T were watching this film (being the target audience it was aimed at)
we just sat & watched the first half an hour with our jaws touching the
floor at how bad it really was. The rest of the time, everyone else in the
theater just started talking to each other, leaving or generally crying
into their popcorn ...

We have labeled training and test sets, each consisting of 25,000
reviews, and each balanced with regard to sentiment.

We wish to build a classifier to predict the sentiment of a
review.

70of72

Featurization: Bag-of-Words
Documents have different lengths, and consist of sequences of
words. How do we create features X to characterize a
document?
® From a dictionary, identify the 10K most frequently
occurring words.
® (Create a binary vector of length p = 10K for each
document, and score a 1 in every position that the
corresponding word occurred.
® With n documents, we now have a n X p sparse feature
matrix X.
® We compare a lasso logistic regression model to a
two-hidden-layer neural network on the next slide. (No
convolutions here!)

8 of 72

Featurization: Bag-of-Words
Documents have different lengths, and consist of sequences of
words. How do we create features X to characterize a
document?
® From a dictionary, identify the 10K most frequently
occurring words.
® (Create a binary vector of length p = 10K for each
document, and score a 1 in every position that the
corresponding word occurred.
® With n documents, we now have a n X p sparse feature
matrix X.
® We compare a lasso logistic regression model to a
two-hidden-layer neural network on the next slide. (No
convolutions here!)
® Bag-of-words are unigrams. We can instead use bigrams
(occurrences of adjacent word pairs), and in general

m-grams.
9of 72

Lasso versus Neural Network — IMDB Reviews

Lasso Neural Net
o o
- 7 e e
o | o |
o o
oy oy
S o | S o |
3 o 3 o
Q Q
< <
~ ~
o p o
e train
- validation
o | = test @ |
o o
T T T T T T T T T
4 6 8 10 12 5 10 15 20
—log(A) Epochs

® Simpler lasso logistic regression model works as well as
neural network in this case.

® glmnet was used to fit the lasso model, and is very effective
because it can exploit spassity in the X matrix.

Recurrent Neural Networks

Often data arise as sequences:

® Documents are sequences of words, and their relative

positions have meaning.

e Time-series such as weather data or financial indices.

® Recorded speech or music.

® Handwriting, such as doctor’s notes.
RNNs build models that take into account this sequential
nature of the data, and build a memory of the past.

110f 72

Recurrent Neural Networks

Often data arise as sequences:
® Documents are sequences of words, and their relative
positions have meaning.
e Time-series such as weather data or financial indices.
® Recorded speech or music.
® Handwriting, such as doctor’s notes.
RNNs build models that take into account this sequential
nature of the data, and build a memory of the past.

® The feature for each observation is a sequence of vectors
X ={X1,Xo,..., X1}

12 0f 72

Recurrent Neural Networks

Often data arise as sequences:
® Documents are sequences of words, and their relative
positions have meaning.
e Time-series such as weather data or financial indices.
® Recorded speech or music.
® Handwriting, such as doctor’s notes.
RNNs build models that take into account this sequential
nature of the data, and build a memory of the past.

® The feature for each observation is a sequence of vectors
X ={X1,Xo,..., X1}

® The target Y is often of the usual kind — e.g. a single
variable such as Sentiment, or a one-hot vector for
multiclass.

13 0f 72

Recurrent Neural Networks

Often data arise as sequences:
® Documents are sequences of words, and their relative
positions have meaning.
e Time-series such as weather data or financial indices.
® Recorded speech or music.
® Handwriting, such as doctor’s notes.
RNNs build models that take into account this sequential
nature of the data, and build a memory of the past.

® The feature for each observation is a sequence of vectors
X ={X1,Xo,..., X1}

® The target Y is often of the usual kind — e.g. a single
variable such as Sentiment, or a one-hot vector for
multiclass.

e However, Y can also be a sequence, such as the same

document in a different language.
14 of 72

Simple Recurrent Neural Network Architecture

Y Y
! !
Oy 0, (0D O3 Or. Oy,
CTT“ R T b
4, = (424" (a2 A4,

[b w o

XZ Xl XZ X3 e XL-l XL

150f 72

Simple Recurrent Neural Network Architecture
Y Y

! !

Oy o O, O3 Or., Oy,

L—Tiu CR o
A = (4L 4 Y a0 A2 (A,

£

[b w o

XZ Xl X2 X3 e XL—I L

® The hidden layer is a sequence of vectors Ay, receiving as
input X, as well as Ay_1. Ay produces an output O,.

16 of 72

Simple Recurrent Neural Network Architecture
Y Y
! !
Oy o O, O3 Or., Oy,

e by

£

| b w o

XE Xl X2 X3 e XL—I L

® The hidden layer is a sequence of vectors Ay, receiving as
input X, as well as Ay_1. Ay produces an output O,.

® The same weights W, U and B are used at each step in
the sequence — hence the term recurrent.

17 of 72

Simple Recurrent Neural Network Architecture
Y Y

! !

Oy 01 (O O3 O, O,

e by

£

| b w o

XE Xl X2 X3 e XL—I L

® The hidden layer is a sequence of vectors Ay, receiving as
input X, as well as Ay_1. Ay produces an output O,.

® The same weights W, U and B are used at each step in
the sequence — hence the term recurrent.

e The A, sequence represents an evolving model for the

response that is updated as each element X, is processed.
18 of 72

RNN in Detail

Suppose Xy = (X¢1, Xe2, ..., Xpp) has p components, and
Ay = (An, Ag, ..., Agrc) has K components. Then the
computation at the kth components of hidden unit Ay is

P K
g<wk0 + 3w X+ Y uksAZA,s)
j=1 s=1

Ay,

K
O = Bo+ Y Brdu
k=1

Often we are concerned only with the prediction Oy, at the last
unit. For squared error loss, and n sequence/response pairs, we
would minimize

n n

K p K
Z(yi_OiL)2 = Z (yi_ (50+Z »Bkg(wk:o-FZ wijCiLj-FZ Uksai,Lfl,s>))2~
k=1 j=1 s=1

i=1 =1

19 0f 72

RNN and IMDB Reviews

The document feature is a sequence of words {W,}¥. We
typically truncate/pad the documents to the same number
L of words (we use L = 500).

Each word W is represented as a one-hot encoded binary
vector Xy (dummy variable) of length 10K, with all zeros
and a single one in the position for that word in the
dictionary.

This results in an extremely sparse feature representation,
and would not work well.

Instead we use a lower-dimensional pretrained word
embedding matrix E (m x 10K, next slide).

This reduces the binary feature vector of length 10K to a
real feature vector of dimension m < 10K (e.g. m in the
low hundreds.)

20 of 72

Word Embedding

]]
n
n n n
]
n
= n n
n
T]
@ n
1o} [
n
n
n
n
n
]
—rT 1 T T T T T T T T T T T T T T T T 1
V)W(D“‘(D"’(ﬂ%ﬂ)"'_mh:ﬂ)emﬂ):%
s — ¢ © < 9 = < 92 > 9 ¢ & £ £ c &8 ®
£ S *-'g__‘—sg*-‘g 8 g g * ¥ 8 ¢ °
‘a "
@
[T T O O O S S|
3 . -
a]]] []
E = = u u n
- - - - - -

this is one of the best films actually the best I have ever seen the film

starts one fall day - - -.

Embeddings are pretrained on very large corpora of documents,
using methods similar to principal components. word2vec and

GloVe are popular.
210f 72

RNN on IMDB Reviews

e After a lot of work, the results are a disappointing 76%
accuracy.

22 0f 72

RNN on IMDB Reviews

e After a lot of work, the results are a disappointing 76%
accuracy.

® We then fit a more exotic RNN than the one displayed — a
LSTM with long and short term memory. Here Ay receives
input from A,y (short term memory) as well as from a
version that reaches further back in time (long term
memory). Now we get 87% accuracy, slightly less than the
88% achieved by glmnet.

23 of 72

RNN on IMDB Reviews

e After a lot of work, the results are a disappointing 76%
accuracy.

® We then fit a more exotic RNN than the one displayed — a
LSTM with long and short term memory. Here Ay receives
input from A,;_; (short term memory) as well as from a
version that reaches further back in time (long term
memory). Now we get 87% accuracy, slightly less than the
88% achieved by glmnet.

® These data have been used as a benchmark for new RNN
architectures. The best reported result found at the time of
writing (2020) was around 95%. We point to a leaderboard
in Section 10.5.1.

24 of 72

Dow Jones Return Log(Trading Volume)

Log(Volatility)

05 1.0

-11 -8 -0.04 0.00 0.04 -1.0 0.0

-13

Time Series Forecasting

T
1965 1970 75 1980
250f 72

1985

New-York Stock Exchange Data

Shown in previous slide are three daily time series for the period
December 3, 1962 to December 31, 1986 (6,051 trading days):

® Log trading volume. This is the fraction of all
outstanding shares that are traded on that day, relative to
a 100-day moving average of past turnover, on the log scale.

® Dow Jones return. This is the difference between the log
of the Dow Jones Industrial Index on consecutive trading
days.

® Log volatility. This is based on the absolute values of
daily price movements.

Goal: predict Log trading volume tomorrow, given its
observed values up to today, as well as those of Dow Jones
return and Log volatility.

26 of 72

Autocorrelation

Log(Trading Volume)

o

£

o o

§ S

[T

S 7

8 < |

o o

“HHHHHM |

o

S o e

<g\ T T T T T T \I
0 5 10 15 20 25 30 35

Lag

® The autocorrelation at lag £ is the correlation of all pairs
(vg, v4—p) that are £ trading days apart.

27 of 72

Autocorrelation

Log(Trading Volume)

o

£

o o

§ S

[T

S 7

8 < |

o o

“HHHHHM |

o

S o e

<g\ T T T T T T \I
0 5 10 15 20 25 30 35

Lag

® The autocorrelation at lag £ is the correlation of all pairs
(vg, v4—p) that are £ trading days apart.

® These sizable correlations give us confidence that past
values will be helpful in predicting the future.

28 of 72

Autocorrelation

Log(Trading Volume)

o

£

o o

§ S

[T

S 7

8 < |

o o

“HHHHHM |

o

S o e

<g\ T T T T T T \I
0 5 10 15 20 25 30 35

Lag

® The autocorrelation at lag £ is the correlation of all pairs
(vg, v4—p) that are £ trading days apart.

® These sizable correlations give us confidence that past
values will be helpful in predicting the future.

e This is a curious prediction problem: the response v, is also

a feature v_p! 29 0f 72

RNN Forecaster

We only have one series of data! How do we set up for an RNN?

We extract many short mini-series of input sequences
X ={X1,Xo,..., X1} with a predefined length L known as the
lag:

Vt—L Vt—L+1 Vt—1
Xo=|rm0r|, Xo= "y |, Xp=|r-1]|, and Y = v
Zt—L Zt—L+1 2t—1

Since T' = 6,051, with L =5 we can create 6,046 such (X,Y)
pairs.

We use the first 4,281 as training data, and the following 1,770
as test data. We fit an RNN with 12 hidden units per lag step
(i.e. per Ay.)

30 of 72

RNN Results for NYSE Data

Test Period: Observed and Predicted

RS

T T T I
1980 1982 1984 1986

Year

Figure shows predictions and truth for test period.

R? = 0.42 for RNN
R? = 0.18 for straw man — use yesterday’s value of Log
trading volume to predict that of today.

310f 72

Autoregression Forecaster

The RNN forecaster is similar in structure to a traditional
autoregression procedure.

VL1 1 v w1 -+ om0

V42 1 vppr v -0 w2

y = | VL+3 M= |1 viy2 vp41 - ws
| vr | | 1 vpy vpo -+ wvp_p |

Fit an OLS regression of y on M, giving
iy = Bo + Prop—1 + Povy—o + - + Brue-r.

Known as an order-L autoregression model or AR(L).
For the NYSE data we can include lagged versions of DJ_return
and log volatility in matrix M, resulting in 3L + 1 columns.

320f72

Autoregression Results for NYSE Data

R? = 0.41 for AR(5) model (16 parameters)
R? = 0.42 for RNN model (205 parameters)
R? = 0.42 for AR(5) model fit by neural network.

R? = 0.46 for all models if we include day_of _week of day being
predicted.

33 0f 72

Summary of RNNs

We have presented the simplest of RNNs. Many more
complex variations exist.

One variation treats the sequence as a one-dimensional
image, and uses CNNs for fitting. For example, a sequence
of words using an embedding representation can be viewed
as an image, and the CNN convolves by sliding a
convolutional filter along the sequence.

Can have additional hidden layers, where each hidden layer
is a sequence, and treats the previous hidden layer as an
input sequence.

Can have output also be a sequence, and input and output
share the hidden units. So called seq2seq learning are used
for language translation.

34 of 72

When to Use Deep Learning

® CNNs have had enormous successes in image classification
and modeling, and are starting to be used in medical
diagnosis. Examples include digital mammography;,
ophthalmology, MRI scans, and digital X-rays.

35 of 72

When to Use Deep Learning

® CNNs have had enormous successes in image classification
and modeling, and are starting to be used in medical
diagnosis. Examples include digital mammography;,
ophthalmology, MRI scans, and digital X-rays.

® RNNs have had big wins in speech modeling, language
translation, and forecasting.

36 of 72

When to Use Deep Learning

® CNNs have had enormous successes in image classification
and modeling, and are starting to be used in medical
diagnosis. Examples include digital mammography;,
ophthalmology, MRI scans, and digital X-rays.

® RNNs have had big wins in speech modeling, language
translation, and forecasting.

Should we always use deep learning models?

37 of 72

When to Use Deep Learning

® CNNs have had enormous successes in image classification
and modeling, and are starting to be used in medical
diagnosis. Examples include digital mammography;,
ophthalmology, MRI scans, and digital X-rays.

® RNNs have had big wins in speech modeling, language
translation, and forecasting.

Should we always use deep learning models?

® Often the big successes occur when the signal to noise ratio
is high — e.g. image recognition and language translation.
Datasets are large, and overfitting is not a big problem.

38 of 72

When to Use Deep Learning

® CNNs have had enormous successes in image classification
and modeling, and are starting to be used in medical
diagnosis. Examples include digital mammography;,
ophthalmology, MRI scans, and digital X-rays.

® RNNs have had big wins in speech modeling, language
translation, and forecasting.

Should we always use deep learning models?
® Often the big successes occur when the signal to noise ratio
is high — e.g. image recognition and language translation.
Datasets are large, and overfitting is not a big problem.
® For noisier data, simpler models can often work better.
® On the NYSE data, the AR(5) model is much simpler than a
RNN, and performed as well.
® On the IMDB review data, the linear model fit by glmnet did
as well as the neural network, and better than the RNN.

39 of 72

When to Use Deep Learning

® CNNs have had enormous successes in image classification
and modeling, and are starting to be used in medical
diagnosis. Examples include digital mammography;,
ophthalmology, MRI scans, and digital X-rays.

® RNNs have had big wins in speech modeling, language
translation, and forecasting.

Should we always use deep learning models?
® Often the big successes occur when the signal to noise ratio
is high — e.g. image recognition and language translation.
Datasets are large, and overfitting is not a big problem.
® For noisier data, simpler models can often work better.
® On the NYSE data, the AR(5) model is much simpler than a
RNN, and performed as well.
® On the IMDB review data, the linear model fit by glmnet did
as well as the neural network, and better than the RNN.
e We endorse the Occam’s razor principal — we prefer
simpler models if they work: as well. More interpretable!

Fitting Neural Networks

— 1 n
/o \ n{aini}mize 3 Z(yl — f(2:))?
ey w8 2T
NN

A XY where

" As 7 K P
7 flzi) = 504'2 Brg (wk0+ wijij).

4 k=1 j=1

410f 72

Fitting Neural Networks

Input Hidden Output
Layer Layer Layer

1 n
minimize — E (y; — f(xi))Qv
i=1

{we S, B 2
where
K P
F@i) = BotD B (wio+ Y wigass)-

k=1 j=1

This problem is difficult because the objective is non-convex.

42 of 72

Fitting Neural Networks

Input Hidden Output
Layer Layer Layer
A
' .1 = 2
minimize = > (g — £(:))?,
42 {wi}f, 8 27—
o As)Y where
As K 4
\ f(x;) = Bo+ E ﬁkg(w/co-i- g wlcjxij)~
As k=1 7j=1

This problem is difficult because the objective is non-convex.

Despite this, effective algorithms have evolved that can
optimize complex neural network problems efficiently.

43 of 72

Non Convex Functions and Gradient Descent
Let R(0) = 3 371 (yi — fo(zi))? with 6 = ({wi}, B).

~
R(6°
(')R(el)
N o -
R(6%)
= S_RE
e o 6° o
° 7 L | 1
T T T T T
-1.0 -05 0.0 0.5 1.0
0

1. Start with a guess #° for all the parameters in 6, and set ¢ = 0.

2. Iterate until the objective R(0) fails to decrease:
(a) Find a vector ¢ that reflects a small change in 6, such that
O'+1 = 0! + § reduces the objective; i.e. R(6F!) < R(6?).
(b) Set ¢+ t+1.

44 of 72

Gradient Descent Continued

® In this simple example we reached the global minimum.

e If we had started a little to the left of §° we would have
gone in the other direction, and ended up in a local
minimum.

e Although 0 is multi-dimensional, we have depicted the
process as one-dimensional. It is much harder to identify
whether one is in a local minimum in high dimensions.

How to find a direction § that points downhill? We compute
the gradient vector

OR(0)

VR(#) = —~2

(%) 00 lo=ot

i.e. the vector of partial derivatives at the current guess 0°.

The gradient points uphill, so our update is § = —pVR(6?) or
Ot 0! — pVR(9Y),
where p is the learning rate (typically small, e.g. p = 0.001.

45 of 72

Gradients and Backpropagation
R(0) =>"7" | Ri(0) is a sum, so gradient is sum of gradients.
K P 9
Ri(0) = 2 (yi— fo(z:))* = %(yi—ﬁo—z ﬁkg(wkoJrZ wkjﬂﬂij))

k=1 j=1

For ease of notation, let z;. = wio + Z§:1 Wkj T

Backpropagation uses the chain rule for differentiation:

OR(O) ORiO) Ofalw)
0B, Ofo(xi) OB
= —(yi — fo(xi)) - g(zir)-
Qwgj Ofe(zi) Og(zi) Oz Owg,

= —(i — fo(x:) - Br- ' (zir) - w45

46 of 72

Tricks of the Trade

® Slow learning. Gradient descent is slow, and a small
learning rate p slows it even further. With early stopping,
this is a form of regularization.

47 of 72

Tricks of the Trade

® Slow learning. Gradient descent is slow, and a small
learning rate p slows it even further. With early stopping,
this is a form of regularization.

® Stochastic gradient descent. Rather than compute the
gradient using all the data, use a small minibatch drawn at
random at each step. E.g. for MNIST data, with n = 60K,
we use minibatches of 128 observations.

48 of 72

Tricks of the Trade

® Slow learning. Gradient descent is slow, and a small
learning rate p slows it even further. With early stopping,
this is a form of regularization.

® Stochastic gradient descent. Rather than compute the
gradient using all the data, use a small minibatch drawn at
random at each step. E.g. for MNIST data, with n = 60K,
we use minibatches of 128 observations.

® An epoch is a count of iterations and amounts to the
number of minibatch updates such that n samples in total
have been processed; i.e. 60K /128 =~ 469 for MNIST.

49 of 72

Tricks of the Trade

Slow learning. Gradient descent is slow, and a small
learning rate p slows it even further. With early stopping,
this is a form of regularization.

Stochastic gradient descent. Rather than compute the
gradient using all the data, use a small minibatch drawn at
random at each step. E.g. for MNIST data, with n = 60K,
we use minibatches of 128 observations.

An epoch is a count of iterations and amounts to the
number of minibatch updates such that n samples in total
have been processed; i.e. 60K /128 =~ 469 for MNIST.

Regularization. Ridge and lasso regularization can be used
to shrink the weights at each layer. T'wo other popular
forms of regularization are dropout and augmentation,
discussed next.

50 of 72

Dropout Learning

e At each SGD update, randomly remove units with
probability ¢, and scale up the weights of those retained by
1/(1 — ¢) to compensate.

51 0f 72

Dropout Learning

® At each SGD update, randomly remove units with
probability ¢, and scale up the weights of those retained by
1/(1 — ¢) to compensate.

® In simple scenarios like linear regression, a version of this
process can be shown to be equivalent to ridge
regularization.

52 of 72

Dropout Learning

® At each SGD update, randomly remove units with
probability ¢, and scale up the weights of those retained by
1/(1 — ¢) to compensate.

® In simple scenarios like linear regression, a version of this
process can be shown to be equivalent to ridge
regularization.

® As in ridge, the other units stand in for those temporarily
removed, and their weights are drawn closer together.

53 of 72

Dropout Learning

At each SGD update, randomly remove units with
probability ¢, and scale up the weights of those retained by
1/(1 — ¢) to compensate.

In simple scenarios like linear regression, a version of this
process can be shown to be equivalent to ridge
regularization.

As in ridge, the other units stand in for those temporarily
removed, and their weights are drawn closer together.

Similar to randomly omitting variables when growing trees
in random forests (Chapter 8).

54 of 72

Ridge and Data Augmentation

X2

Xy

® Make many copies of each (x;,y;) and add a small amount
of Gaussian noise to the x; — a little cloud around each
observation — but leave the copies of y; alone!

e This makes the fit robust to small perturbations in z;, and
is equivalent to ridge regg%%f%zation in an OLS setting.

Data Augmentation on the Fly

¢ Data augmentation is especially effective with SGD, here
demonstrated for a CNN and image classification.

56 of 72

Data Augmentation on the Fly

¢ Data augmentation is especially effective with SGD, here
demonstrated for a CNN and image classification.

e Natural transformations are made of each training image
when it is sampled by SGD, thus ultimately making a
cloud of images around each original training image.

57 of 72

Data Augmentation on the Fly

¢ Data augmentation is especially effective with SGD, here
demonstrated for a CNN and image classification.

e Natural transformations are made of each training image
when it is sampled by SGD, thus ultimately making a
cloud of images around each original training image.

® The label is left unchanged — in each case still tiger.

58 of 72

Data Augmentation on the Fly

Data augmentation is especially effective with SGD, here
demonstrated for a CNN and image classification.

Natural transformations are made of each training image
when it is sampled by SGD, thus ultimately making a
cloud of images around each original training image.

The label is left unchanged — in each case still tiger.

Improves performance of CNN and is similar to ridge.

59 of 72

Double Descent

e With neural networks, it seems better to have too many
hidden units than too few.

60 of 72

Double Descent

e With neural networks, it seems better to have too many
hidden units than too few.

® Likewise more hidden layers better than few.

61 of 72

Double Descent

e With neural networks, it seems better to have too many
hidden units than too few.

® Likewise more hidden layers better than few.

® Running stochastic gradient descent till zero training error
often gives good out-of-sample error.

62 of 72

Double Descent

With neural networks, it seems better to have too many
hidden units than too few.

Likewise more hidden layers better than few.

Running stochastic gradient descent till zero training error
often gives good out-of-sample error.

Increasing the number of units or layers and again training
till zero error sometimes gives even better out-of-sample
error.

63 of 72

Double Descent

e With neural networks, it seems better to have too many
hidden units than too few.

® Likewise more hidden layers better than few.

® Running stochastic gradient descent till zero training error
often gives good out-of-sample error.

® Increasing the number of units or layers and again training
till zero error sometimes gives even better out-of-sample
error.

What happened to overfitting and the usual bias-variance
trade-off?

Belkin, Hsu, Ma and Mandal (arXiv 2018) Reconciling Modern Machine Learning

and the Bias-Variance Trade-off.

64 of 72

Simulation

y = sin(x) + & with ~ U[-5, 5] and ¢ Gaussian with
S.D. =0.3.
Training set n = 20, test set very large (10K).

We fit a natural spline to the data (Section 7.4) with d
degrees of freedom — i.e. a linear regression onto d basis
functions: g; = B1.N1(zi) + B2N2 (i) + - - - + BalNa(ws).
When d = 20 we fit the training data exactly, and get all
residuals equal to zero.

When d > 20, we still fit the data exactly, but the solution
is not unique. Among the zero-residual solutions, we pick
the one with minimum norm — i.e. the zero-residual
solution with smallest 2?21 3]2

65 of 72

The Double-Descent Error Curve

20

Training Error
Test Error

1.0 15

Error

0.5

T T T T T
2 5 10 20 50

Degrees of Freedom

® When d < 20, model is OLS, and we see usual bias-variance
trade-off

® When d > 20, we revert to minimum-norm. As d increases
above 20, Z;-lzl BA? decreases since it is easier to achieve

zero error, and hence less wiggly solutions.
66 of 72

Less Wiggly Solutions

8 Degrees of Freedom

o
~
(0]

- 55

o — o o o

T & o

o

I

i B LUl T N ' N
T T T T T
-4 -2 0 2 4

42 Degrees of Freedom

©

~

= of @ o

o N //OD 0

o (KQ/ EKO,

I OO

o

I

N BN LUl T N ' N
T T T T T
-4 -2 0 2 4

To achieve a zero-residual solution

Easier for larger d.

-3 -2 -1 0

67 of 72

20 Degrees of Freedom

Q

2

o\\o /ZVO% .
N \SKT

0%

111 | I Il 1l | [l 1

T T T T T

-4 -2 0 2 4

80 Degrees of Freedom

| 30\\@//5’2»%\&5

111 1 Il Il H‘\ 1 HH‘ |

-4 -2 0 2 4

with d = 20 is a real stretch!

Some Facts

¢ In a wide linear model (p > n) fit by least squares, SGD
with a small step size leads to a minimum norm
zero-residual solution.

68 of 72

Some Facts

¢ In a wide linear model (p > n) fit by least squares, SGD
with a small step size leads to a minimum norm
zero-residual solution.

® Stochastic gradient flow — i.e. the entire path of SGD
solutions — is somewhat similar to ridge path.

69 of 72

Some Facts

¢ In a wide linear model (p > n) fit by least squares, SGD
with a small step size leads to a minimum norm
zero-residual solution.

® Stochastic gradient flow — i.e. the entire path of SGD
solutions — is somewhat similar to ridge path.

® By analogy, deep and wide neural networks fit by SGD

down to zero training error often give good solutions that
generalize well.

70 of 72

Some Facts

In a wide linear model (p > n) fit by least squares, SGD
with a small step size leads to a minimum norm
zero-residual solution.

Stochastic gradient flow — i.e. the entire path of SGD
solutions — is somewhat similar to ridge path.

By analogy, deep and wide neural networks fit by SGD
down to zero training error often give good solutions that
generalize well.

In particular cases with high signal-to-noise ratio — e.g.
image recognition — are less prone to overfitting; the
zero-error solution is mostly signal!

710f 72

Software

® Wonderful software available for neural networks and deep
learning. Tensorflow from Google and PyTorch from
Facebook. Both are Python packages.

® [n the Chapter 10 lab we demonstrate tensorflow and
keras packages in R, which interface to Python. See
textbook and online resources for Rmarkdown and Jupyter
notebooks for these and all labs for the second edition of
ISLR book.

® The torch package in R is available as well, and
implements the PyTorch dialect. The Chapter 10 lab will
be available in this dialect as well; watch the resources
page at www.statlearning.com.

72 of 72

www.statlearning.com

	Blank Page
	Blank Page
	Blank Page
	Blank Page

