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Recurrent Neural Networks

Often data arise as sequences:

® Documents are sequences of words, and their relative

positions have meaning.

® Time-series such as weather data or financial indices.

e Recorded speech or music.

e Handwriting, such as doctor’s notes.
RNNs build models that take into account this sequential
nature of the data, and build a memory of the past.

e The feature for each observation is a sequence of vectors
X =4 X, XS puiv g XL T

® The target Y is often of the usual kind — e.g. a single
variable such as Sentiment, or a one-hot vector for
multiclass.

e However, Y can also be a sequence, such as the same

document in a different language.
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Simple Recurrent Neural Network Architecture
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® The hidden layer is a sequence of vectors Ay, receiving as
input X,y as well as Ay_1. Ay produces an output Oy.

® The same weights W, U and B are used at each step in
the sequence — hence the term recurrent.

e The A, sequence represents an evolving model for the

response that is updated as each element X, is processed.
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When to Use Deep Learning

¢ CNNs have had enormous successes in image classification
and modeling, and are starting to be used in medical
diagnosis. Examples include digital mammography,
ophthalmology, MRI scans, and digital X-rays.

® RNNs have had big wins in speech modeling, language
translation, and forecasting.

Should we always use deep learning models?
® Often the big successes occur when the signal to noise ratio
is high — e.g. image recognition and language translation.

Datasets are large, and overfitting is not a big problem.
® For noisier data, simpler models can often work better.
® On the NYSE data, the AR(5) model is much simpler than a
RNN, and performed as well.
® On the IMDB review data, the linear model fit by glmnet did
as well as the neural network, and better than the RNN.

® We endorse the Occam’s razor principal — we prefer
simpler models if they wark as well. More interpretable!
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Non Convex Functions and Gradient Descent
Let R(0) = 3> 1 (vi — fo(z:))? with 6 = ({wi}{*, B).
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1. Start with a guess #° for all the parameters in , and set ¢t = 0.

2. Iterate until the objective R(f) fails to decrease:

(a) Find a vector § that reflects a small change in 6, such that
9t+1 = @ + § reduces the objective; i.e. R(91T1) < R(6Y).
(b) Sett+ t+1.
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Gradients and Backpropagation
R(0) =" R;(6) is a sum, so gradient is sum of gradients.
2

K p
Ri(0) = 3(yi— fo(z:))* = %(yz‘—ﬁo—z Brg(wro+) ’wkjfl:z'j))
k=1 =1

For ease of notation, let z;z = wio + Z?:l Wk Tij-

Backpropagation uses the chain rule for differentiation:

OR;(0) ORi(0) Ofp(z:)

OBk Ofe(zi) OBk
= — (% — fo(zi)) - 9(zix)-
OR;(0) _  ORi(0) Ofp(zi) 99(zik) Oz
Owy,; Ofo(xzi) 0g(zik) Ozix  Owg,

= —(yi — fo(z:)) - Br - ¢ (2ix) - 5.
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Tricks of the Trade

Slow learning. Gradient descent is slow, and a small
learning rate p slows it even further. With early stopping,
this is a form of regularization.

Stochastic gradient descent. Rather than compute the
gradient using all the data, use a small minibatch drawn at
random at each step. E.g. for MNIST data, with n = 60K,
we use minibatches of 128 observations.

An epoch is a count of iterations and amounts to the

number of minibatch updates such that n samples in total
have been processed; i.e. 60K /128 ~ 469 for MNIST.

Reqularization. Ridge and lasso regularization can be used
to shrink the weights at each layer. Two other popular
forms of regularization are dropout and augmentation,
discussed next.
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The Double-Descent Error Curve

Double Descent ) B
;e |
® With neural networks, it seems better to have too many B N il
hidden units than too few. é T %
® Likewise more hidden layers better than few. AR E e R A
. . . . . . ® When d > 20, we revert to minimum-norm. As d increases
® Running stochastic gradient descent till zero training error b - e
. zero error, and hence less wiggly solutions.
often gives good out-of-sample error.

® Increasing the number of units or layers and again training
till zero error sometimes gives even better out-of-sample
erTor.

What happened to overfitting and the usual bias-variance
trade-off?

Belkin, Hsu, Ma and Mandal (arXiv 2018) Reconciling Modern Machine Learning
and the Bias-Variance Trade-off.
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scientific reports

‘ W) Check for updates

OPEN Monthly climate prediction using
deep convolutional neural network

and long short-term memory

Qingchun Guo®%234 Zhenfang Hel? & Zhaosheng Wang®
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Figure 1. Location Map of the research area. The map is generated using ArcGIS Pro 2.5 (ArcGIS Pro), URL:
https://www.esriuk.com.

Goal: 5 machine learning models are used to forecast six climatic factors on a monthly ahead.

Data: The climate data for 72 years (1 January 1951-31 December 2022) used in this study

include

1. monthly average atmospheric temperature,
2. extreme minimum atmospheric temperature,
3. extreme maximum atmospheric temperature,

4. precipitation,
5. average relative humidity,
6. sunlight hours.
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Figure 4. Basic structure diagram of CNN.
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Figure 5. The CNN-LSTM architecture.




ANN 0.9894 0.9870 0.9907 1.8199 1.9923 2.0669 1.4787 1.6352 1.8042
RNN 0.9905 0.9881 0.9895 1.3891 1.5245 1.4416 1.0836 1.1594 1.1917
LSTM 0.9906 0.9870 0.9914 1.3819 1.5965 1.3482 1.0710 1.2278 1.1485
CNN 0.9968 0.9965 0.9969 0.8148 0.8249 0.8015 0.6387 0.6290 0.6680
CNN-LSTM 0.9982 0.9982 0.9981 0.6422 0.6270 0.6292 0.5043 0.4726 0.5048

Table 3. Comparison analysis between various models for simulated monthly average atmospheric

temperature.
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Figure 6. Comparison of observed and predicted values of monthly average atmospheric temperature in Jinan

from 2015 to 2022. (a) Plot of the prediction results, (b) Scatterplot of the prediction results.



ANN 0.6853 0.6823 0.7092 58.7736 56.3767 67.4976 39.8891 34.4801 42.5787
RNN 0.7412 0.7452 0.7590 53.0472 50.2847 62.1261 33.1355 29.3883 37.7565
LSTM 0.7685 0.7246 0.7672 50.6978 52.4807 60.5523 32.5079 31.4153 36.0748
CNN 0.9691 0.9629 0.9857 20.2432 22.5777 16.8436 13.8417 13.8229 11.8683
CNN-LSTM 0.9952 0.9930 0.9962 7.8252 8.8947 8.1762 6.0644 6.7083 6.7051

Table 6. Comparison analysis between various models for simulated monthly precipitation.
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Figure 9. Comparison of observed and predicted values of monthly precipitation in Jinan from 2015 to 2022.

(a) Plot of the prediction results, (b) Scatterplot of the prediction results.



Average elapsed time | 17 18 19 40 89

Table 9. Average time for each model run.
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» IMDB Document Classification ‘

We now implement models for sentiment classification (Section??7}-en-the- IMBB -dataset-As-mentioned-above-code-bleck8, we are using a preprocessed version of the IMDB dataset found in the keras package. As keras uses
tensorflow, a different tensor and deep learning library, we have converted the data to be suitable for torch . The code used to convert from keras is available in the module ISLP.torch._make_imdb . It requires some of the keras

packages to run. These data use a dictionary of size 10,000.
We have stored three different representations of the review data for this lab:

* load_tensor() , a sparse tensor version usable by torch ;
¢ load_sparse() , a sparse matrix version usable by sklearn , since we will compare with a lasso fit;
¢ load_sequential() , a padded version of the original sequence representation, limited to the last 500 words of each review.

+ 31 cells hidden

Recurrent Neural Networks
In this lab we fit the models illustrated in Section~777.

+ 56 cells hidden

Click to add a cell.
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