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Abstract

Assessing the upscale impact of organized tropical convection from small spatial and tem-

poral scales is a research imperative, not only for having a better understanding of the

multi-scale structures of dynamical and convective fields in the tropics, but also for eventu-

ally helping in the design of new parameterization strategies to improve the next-generation

global climate models. Here self-consistent multi-scale models are derived systematically by

following the multi-scale asymptotic methods and used to describe the hierarchical struc-

tures of tropical atmospheric flows. The advantages of using these multi-scale models lie

in isolating the essential components of multi-scale interaction and providing assessment of

the upscale impact of the small-scale fluctuations onto the large-scale mean flow through

eddy flux divergences of momentum and temperature in a transparent fashion. Specifically,

this thesis includes three research projects about multi-scale interaction of organized tropical

convection, involving tropical flows at different scaling regimes and utilizing different multi-

scale models correspondingly. Inspired by the observed variability of tropical convection on

multiple temporal scales, including daily and intraseasonal time scales, the goal of the first

project is to assess the intraseasonal impact of the diurnal cycle on the planetary-scale cir-

culation such as the Hadley cell. As an extension of the first project, the goal of the second

project is to assess the intraseasonal impact of the diurnal cycle over the Maritime Conti-

nent on the Madden-Julian Oscillation. In the third project, the goals are to simulate the

baroclinic aspects of the ITCZ breakdown and assess its upscale impact on the planetary-

scale circulation over the eastern Pacific. These simple multi-scale models should be useful

to understand the scale interaction of organized tropical convection and help improve the

parameterization of unresolved processes in global climate models.
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Introduction

Tropical convection is organized in a hierarchy of multiple spatial and temporal scales, rang-

ing from cumulus clouds over several kilometers to mesoscale circulation systems (MCSs)

(Houze, 2004) to CCEWs (Kiladis et al., 2009) to intraseasonal oscillations on the plane-

tary scale such as the Madden-Julian Oscillation (MJO) (Zhang, 2005). By releasing large

amounts of rainfall, tropical convection dramatically impacts local weathers and global at-

mospheric conditions. The early investigation about mean properties of tropical convection

and its variability based on the GARP Atlantic Tropical Experiment (GATE) dates back to

1970s (Houze Jr and Cheng, 1977). Recently, organized tropical convection is documented in

the Year of Tropical Convection (YOTC) virtual global field-campaign and further analyzed

through diagnostic, theoretical and numerical studies (Moncrieff et al., 2012). In particu-

lar, Tropical convection over the Maritime Continent is organized on multiple time scales,

ranging from cumulus clouds on the daily time scale to intraseasonal oscillations. On the

daily time scale, the diurnal cycle of tropical convection over the Maritime Continent is very

significant compared with that over the Indian Ocean and the western Pacific Ocean (Hen-

don and Woodberry, 1993; Kikuchi and Wang, 2008). On the intraseasonal time scale, the

Madden-Julian Oscillation (MJO), the dominant component of the intraseasonal variability

in the tropics, typically propagates eastward slowly across the Maritime Continent and can

stall or terminate there along with large amounts of rainfall (Zhang, 2005). On the other

hand, the intertropical convergence zone (ITCZ) is a narrow band of cloudiness encircling

the Earth in the tropics. The eastern Pacific ITCZ remains in the Northern Hemisphere

along the latitudes between 5◦N and 15◦N all year round. Instead of being a steady state,

the ITCZ over the eastern Pacific is sometimes observed to undulate and break down on the

synoptic time scale (Ferreira and Schubert, 1997). Besides, superclusters of cloudiness and

rainfall on the synoptic scale are frequently organized by CCEWs that propagate eastward

or westward along the equator or the ITCZ (Nakazawa, 1988; Kiladis et al., 2009). Instead
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of organizing in a single-scale convective envelope, CCEWs are manifested in a hierarchical

structure where numerous mesoscale convective elements are embedded in the synoptic-scale

convective envelope.

The morphology of organized tropical convection is similar across multiple scales from

the mesoscale to synoptic scale to planetary scale, which is explained by self-similarity prin-

ciple derived by Majda (2007). One crucial feature of self-similarity is that both dynamical

and convective fields during tropical convection exhibit a front-to-rear vertical tilt. By re-

garding an MCS as a small analogue or prototype of large-scale waves, the self-similarity

of cloudiness is explained as a similar progression from shallow to deep convection to strat-

iform anvils on many time scales (Mapes et al., 2006). Such a trimodal characteristics

of tropical convection including cumulus congestus, deep convection and stratiform clouds

is also found in a broad spectrum based on shipboard radar data (Johnson et al., 1999).

Considering the significant impact of organized tropical convection, capturing its spatial

pattern, propagation behaviors and precipitation amounts become a benchmark to examine

skills of comprehensive numerical simulations. By parameterizing these three cloud types

(congestus, deep, stratiform) and carefully dealing with the transition between different type

clouds, the multicloud models successfully reproduce many key features of CCEWs including

the spectrum peaks, reduced phase speed and self-similar front-to-rear tilt (Khouider and

Majda, 2008a). Besides, the large-scale organization of tropical deep convection is investi-

gated in idealized two-dimensional cloud-resolving simulations (Grabowski and Moncrieff,

2001). Idealized simulations using the weather research and forecast (WRF) model show

that traditional cumulus parameterization (CP) tends to destroy both the coherence of the

propagating waves and the variability (Khouider and Han, 2013). Therefore, improving the

traditional CP to capture coherent multi-scale features of organized tropical convection and

self-similar front-to-rear tilt is a research imperative.

Understanding the scale interaction between small-scale disturbances and large-scale wave

envelope is crucial, not only for explaining propagation properties and spatial patterns of
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CCEWs, but also improving the skills of global climate models (GCMs) for weather and

climate forecast. Based on the objective soundings taken during the Tropical Ocean and

Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE)

intense observing period (IOP), the momentum budget residual is estimated to study the

effects of convective momentum transport (CMT) over the western Pacific warm pool (Tung

and Yanai, 2002a,b). In general, CMT not only describes the momentum transport when or-

ganized moist convection on smaller scales affects the large-scale flow field, but also involves

the process of energy conversion from convective available potential energy to horizontal

kinetic energy. In the theoretical directions, simple stochastic models that capture the sig-

nificant intermittent upscale impact of CMT on the large scales due to organized unresolved

convection from squall lines are built and further tested in the column model environment

and the organized synoptic-scale CCEWs through an idealized multicloud model (Majda

and Stechmann, 2008). Besides, a simple dynamic model is derived by including interactions

between a large-scale zonal mean flow and convectively coupled gravity waves and utilized

to quantify and parameterize the effects of CMT (Majda and Stechmann, 2009). Further-

more, CMT and its impact on the large-scale organization of convection are diagnostically

investigated in the two-dimensional cloud-resolving model (Grabowski and Moncrieff, 2001)

and three-dimensional state-of-the-art mesoscale model (Khouider and Han, 2013).

In spite of so much progress, the crucial features of organized tropical convection and

its upscale impact on the large-scale circulation and precipitation are still poorly simulated

in GCMs, which is mainly related with the fact that the resolution of GCMs is too coarse

to explicitly simulate the dynamical and thermal properties of MCSs. In addition, there

still exist huge discrepancies in precipitation amounts between the comprehensive numerical

simulations and observed tropical convection. For example, the present-day GCMs are still

struggling to reproduce the realistic features of the MJO (Jiang et al., 2015). One hypothesis

for such huge discrepancies of precipitation amount is the inadequate treatment of organized

tropical convection and its missing upscale impact on the large-scale flow field in the GCMs.
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The goals of this thesis are as follows: first, using simple multi-scale models to capture

the coherent structure of tropical convection across multiple spatial and temporal scales in a

multi-scale framework; secondly, assessing the upscale impact of small-scale (short time scale)

fluctuations on the large-scale (long time scale) circulation through eddy flux divergence of

momentum and temperature; Thirdly, understanding how much of large-scale (long time

scale) circulation is induced by upscale impact of small-scale (short time scale) fluctuations

rather than mean heating.

In the theoretical directions, the multispace, multitime simplified asymptotic models are

derived systematically from the equatorial primitive equations on an equatorial β-plane by

following multi-scale asymptotic theory, providing a useful framework to understand the

multi-scale phenomenon and describe the hierarchical structures of atmospheric flows in the

tropics (Majda and Klein, 2003; Majda, 2007; Yang and Majda, 2014; Majda and Yang,

2016). The advantages of using these multi-scale models lie in isolating the essential com-

ponents of multi-scale interaction and providing assessment of the upscale impact of the

small-scale fluctuations onto the large-scale envelope through eddy flux divergence of mo-

mentum and temperature in a transparent fashion. For example, the intraseasonal planetary

equatorial synoptic dynamics (IPESD) model (Majda and Klein, 2003) considers the central

role of organized vertically tilted synoptic-scale circulations in reproducing key features of

the MJO across multiple spatial scales (Majda and Biello, 2004; Biello and Majda, 2005,

2006). The IPESD model involves two spatial scales (synoptic and planetary) but only one

temporal scale (intraseasonal). A generalized version of the IPESD model which involves

two spatial scales (synoptic and planetary) and two time scales (daily and intraseasonal)

is derived in Chapter.1. Besides, the modulation of the ITCZ (M-ITCZ) equations (Biello

and Majda, 2013) describe atmospheric flows on both the mesoscale and planetary scale,

which interact with each other in a completely nonlinear way. Such complete nonlinearity

distinguishes itself from other multi-scale models (Biello and Majda, 2005, 2006; Majda,

2007; Biello and Majda, 2010; Majda et al., 2010; Yang and Majda, 2014; Majda and Yang,
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2016), where large-scale mean flow and small-scale fluctuations are typically governed by

different groups of equations. The M-ITCZ equations describe atmospheric dynamics on

both the mesoscale and planetary scale, which are the typical scales of atmospheric flows in

the eastern Pacific ITCZ.

Chapter.1 assesses the intraseasonal impact of planetary-scale inertial oscillations in the

diurnal cycle. In nature, one of the crucial features of tropical convection is the observed vari-

ability on multiple spatiotemporal scales, ranging from cumulus clouds on the daily time scale

over a few kilometers to intraseasonal oscillations over planetary scales. The diurnal cycle of

tropical convection is a significant process, but its large-scale impact is not well understood.

A self-contained derivation of a multi-scale model governing planetary-scale tropical flows on

the daily and intraseasonal time scale is provided in this chapter, by following the derivation

of systematic multi-scale models for tropical convection. This derivation demonstrates the

analytic tractability of the model. The appeal of the multi-scale model developed here is

that it provides assessment of eddy flux divergences of momentum and temperature and

their intraseasonal impact on the planetary-scale circulation in a transparent fashion. Here,

we use it to study the intraseasonal impact of a model for the diurnal cycle heating with

two local phase-lagged baroclinic modes with the congestus, deep, stratiform cloud life cycle.

The results show that during boreal summer, the eddy flux divergence of temperature dom-

inates in the northern hemisphere, providing significant heating in the middle troposphere

of the northern hemisphere with large-scale ascent and cooling with subsidence surrounding

this heating center.

As an extension of Chapter.1, Chapter.2 investigates the intraseasonal impact of the di-

urnal cycle over the Maritime Continent on the MJO. In reality, the eastward-propagating

MJO typically exhibits complex behavior during its passage over the Maritime Continent,

sometimes slowly propagating eastward and other times stalling and even terminating there

with large amounts of rainfall. This is a huge challenge for present-day numerical models.

One possible reason is the inadequate treatment of the diurnal cycle and its scale interaction
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with the MJO. Here these two components are incorporated into a simple self-consistent

multiscale model that includes one model for the intraseasonal impact of the diurnal cycle

and another one for the planetary/intraseasonal circulation. The latter model is forced self-

consistently by eddy flux divergences of momentum and temperature from a model for the

diurnal cycle with two baroclinic modes, which capture the intraseasonal impact of the diur-

nal cycle. The MJO is modeled as the planetary-scale circulation response to a moving heat

source on the synoptic and planetary scales. The results show that the intraseasonal impact

of the diurnal cycle during boreal winter tends to strengthen the westerlies (easterlies) in

the lower (upper) troposphere in agreement with the observations. In addition, the tem-

perature anomaly induced by the intraseasonal impact of the diurnal cycle can cancel that

from the symmetricasymmetric MJO with convective momentum transfer, yielding stalled

or suppressed propagation of the MJO across the Maritime Continent.

Chapter.3 looks at the upscale impact of ITCZ breakdown on the large-scale circula-

tion over the eastern Pacific. The ITCZ over the eastern Pacific is sometimes observed to

break down into several vortices on synoptic time scales (Ferreira and Schubert, 1997). It

is still a challenge for present-day numerical models to simulate the ITCZ breakdown in

the baroclinic modes. Also, the upscale impact of the associated mesoscale fluctuations on

the planetary-scale circulation is not well understood. Here a simplified multi-scale model

for the modulation of the ITCZ is used to study these issues. A prescribed two-scale heat-

ing drives the planetary-scale circulation through both planetary-scale mean heating and

eddy flux divergence of zonal momentum, where the latter represents the upscale impact of

mesoscale fluctuations. Several key features of the ITCZ breakdown in the baroclinic modes

are captured in this multi-scale model. Also, the eddy flux divergence of zonal momentum

and the associated acceleration/deceleration effects are discussed in both deep convective

heating and shallow congestus heating scenarios.

Studies based on simple multi-scale models have several implications for physical inter-

pretation and for comprehensive numerical models. In particular, the explicit expressions
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for eddy flux divergences of momentum and temperature provide a way of assessment of up-

scale impact of small-scale (short time scale) fluctuations on the large-scale (long time scale)

circulation in a transparent fashion, which should be useful to improve the parameterization

of organized tropical convection in GCMs. Meanwhile, these simple multi-scale models can

also be generalized in several ways. For example, instead of prescribing the diabatic heating

across multiple spatial and temporal scales, an active heating function coupling the multi-

scale model with moisture should be useful to model convective instability in the tropics. In

addition, coupling equations to the atmospheric boundary layer can further elaborate the

multi-scale models and introduce new realistic features of tropical convection.
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Chapter 1

A Multi-Scale Model for the

Intraseasonal Impact of the Diurnal

Cycle of Tropical Convection

1.1 Introduction

The diurnal cycle of solar radiation has a major impact on atmospheric flows. Particularly,

it induces significant variability in tropical storms and the associated winds and precipita-

tion over land and ocean areas adjacent to continents. Early investigations of the diurnal

variability of tropical precipitation date back to 1920s (Ray, 1928). The development of

satellite measurements and computers has triggered more work such as the GARP Atlantic

Tropical Experiment (GATE) (McGarry and Reed, 1978; Houze and Betts, 1981; Albright

et al., 1981), the European Union Cloud Archive User Service (CLAUS) project (Yang and

Slingo, 2001) and the Tropical Rainfall Measuring Mission (TRMM) (Yang and Smith, 2006;

Nesbitt and Zipser, 2003; Takayabu, 2002; Sorooshian et al., 2002), leading the community

to have a better understanding of the diurnal variability of tropical convection and precip-

itation over land and oceans. Kikuchi and Wang (2008) confirmed the persistence of the
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diurnal variation of tropical precipitation by using empirical orthogonal functions(EOFs) on

two complementary TRMM datasets(3B42 and 3G68) for 1998-2006. Their results show that

the amplitude of the diurnal variability of tropical precipitation in the continental regime is

much stronger than that in the oceanic regime. Meanwhile it was found (Kikuchi and Wang,

2008) that the diurnal range (DR), which is defined as the climatological daily maximum

precipitation minus daily minimum precipitation, has different meridional spatial patterns

in different seasons. For the annual mean of tropical precipitation, the equatorial conti-

nental regime has relatively large DR, such regime is observed at the Indonesian Maritime

Continent and South America around the equator. For the June July August(JJA) mean

of tropical precipitation, the DR is relatively large on the continents but in the northern

hemisphere such as South Asia, the Indonesian Maritime Continent and Mexico.

The representation of the diurnal variability of tropical precipitation is a major un-

solved problem and very crucial for global weather forecast and climate models. For exam-

ple, present-day computer general circulation models (GCM) typically poorly represent the

Madden-Julian oscillation (MJO) near the Indonesian Maritime Continent (Sperber et al.,

1997). One possible shortcoming is the inadequate treatment of the diurnal cycle and its im-

pact on the intraseasonal variability of atmospheric flow. In fact, current global and regional

numerical models of weather and climate have difficulty in reproducing the diurnal variability

of tropical precipitation (Randall and Dazlich, 1991; Yang and Slingo, 2001; Dai and Tren-

berth, 2004; Tian et al., 2004). Nevertheless, both the diurnal cycle of tropical convection

and MJO simulation have been improved a lot with superparameterization (Khairoutdinov

et al., 2005; Sato et al., 2009; Benedict and Randall, 2011). In a theoretical direction, models

utilizing three cloud types (congestus, deep and stratiform) based on the first two baroclinic

modes of vertical structure plus a boundary layer mode have been built (Khouider and Ma-

jda, 2006a,b,c), successfully reproducing several features of a realistic diurnal cycle of tropical

precipitation over land and oceans (Frenkel et al., 2011a,c, 2013).

The goal of this chapter is to build an analytic multi-scale model to assess the intrasea-
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sonal impact of the diurnal cycle of tropical convection. Compared with the numerical

models, the analytic multi-scale model developed here has the appeal that it is analytically

tractable and relatively simple and consistent with several key features of the observations

such as the diurnal heating associated with the cloud life cycle. Furthermore, there are eddy

flux divergences of momentum and temperature in the planetary/intraseasonal scale equa-

tions, which shows that the model is able to assess upscale effects spatially from the synoptic

scale to the planetary scale and temporally from the daily time scale to the intraseasonal

time scale in an idealized fashion. Several related studies, in the framework of the intrasea-

sonal planetary equatorial synoptic dynamics (IPESD) model (Majda and Klein, 2003), have

considered the central role of organized vertically tilted synoptic-scale circulations in repro-

ducing key features of MJO across multiple spatial scales (Majda and Biello, 2004; Biello and

Majda, 2005, 2006). The IPESD model involves two spatial scales (the synoptic scale and

the planetary scale) but only one temporal scale (the intraseasonal time scale). In contrast,

here the analytic multi-scale model is used to assess upscale effects across multiple temporal

scales, that is, the intraseasonal impact of the diurnal cycle.

Through systematic multi-scale asymptotics following Majda (2007), four systems of

equations involving physical variables on different spatiotemporal scales are derived. The

model for the diurnal cycle is one of those systems, involving all physical variables on the

planetary scale and daily time scale. Since there is a general heating term in the thermal

equation in this model, we prescribe this heating profile to mimic the latent heat which

is released during tropical precipitation in the diurnal cycle. Here we utilize the first two

baroclinic models of vertical structure to characterize organized tropical convection based

on three cloud types (congestus, deep convective and stratiform) in the free troposphere,

which was first introduced in a simple multicloud model (Khouider and Majda, 2006a,b,c).

The second system of equations derived in the chapter is utilized as a model for the plane-

tary/intraseasonal scale circulation, which includes eddy flux divergences of momentum and

temperature from the model for the diurnal cycle. Thus, the resulting circulation response
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on the planetary/intraseasonal scales describes the intraseasonal impact of the diurnal cycle.

The results show that the eddy flux divergence of temperature during boreal summer is much

stronger than that during equinox, which suggests that the significant intraseasonal impact

of the diurnal cycle is traced to the meridional asymmetry of the diurnal heating profile in

the first two baroclinic modes. In general, the dimensionless magnitude of the eddy flux

divergence of temperature due to the diurnal cycle is much larger than that of the eddy flux

divergence of momentum. In an ideal zonally symmetric case, the resulting steady state

circulation on the planetary/intraseasonal scales during boreal summer is characterized by a

circulation cell around the equator. By coupling this system with the model for the Hadley

cell, we will see that the intraseasonal impact of the diurnal cycle can strengthen the upper

branch of the winter cell of the Hadley circulation but weaken the lower branch of the winter

cell of the Hadley circulation.

The rest of this chapter is organized as follows. The basic nondimensional equations

and multi-scale asymptotics are summarized in Section 1.2. In that section, we start from

the primitive equations and derive four systems on multiple spatiotemporal scales by uti-

lizing the multi-scale asymptotic method. The model for the diurnal cycle is developed in

Section 1.3. In that section, we prescribe the diurnal cycle heating in meridionally symmet-

ric and asymmetric profiles to mimic the equinox case and boreal summer case separately.

Section 1.4 assesses the intraseasonal impact of the diurnal cycle of tropical convection on

the planetary/intraseasonal scales in an ideal zonally symmetric case. There are two plane-

tary/intraseasonal scale circulation systems, which involve meridional and vertical velocity

components in different orders. The leading-order system can be used to describe the Hadley

cell (Biello and Majda, 2006). The second order system can be understood as the planetary-

scale circulation response to the intraseasonal impact of the diurnal cycle, since in this system

there are eddy flux divergences of the momentum and temperature from the model of the

diurnal cycle in Section 1.3. Here we first consider the intraseasonal impact of the diurnal

cycle without the advection effects from the Hadley circulation. Then we consider a fully
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coupled system for the planetary/intraseasonal scale circulation advected by the Hadley cell.

Finally, a concluding discussion is given in Section 1.5. Technical details for the derivation of

the multi-scale model, explicit formulas of eddy flux divergences, and the numerical methods,

used for solving the model equations, are summarized in the Appendix.

1.2 Basic Nondimensional Equations and Multi-Scale

Asymptotics

Tropical convection is organized on a hierarchy of spatiotemporal scales such as the tropi-

cal super clusters within intraseasonal variations over the western Pacific (Nakazawa, 1988;

Hendon and Liebmann, 1994; Wheeler and Kiladis, 1999). Here we want to study the effect

of the diurnal tropical convection on the large-scale atmospheric flow, by utilizing simplified

multiscale asymptotic models. The fundamental model for the dynamical behavior of atmo-

spheric flows consists of the hydrostatic, anelastic Euler equations on an equatorial β-plane,

which are the appropriate equations for large-scale phenomena in the tropical troposphere.

The governing equations in dimensionless units read as follows,

D

Dt
u− yv = −px + Su, (1.1a)

D

Dt
v + yu = −py + Sv, (1.1b)

D

Dt
θ +N2w = Sθ, (1.1c)

pz = θ, (1.1d)

(ρu)x + (ρv)y + (ρw)z = 0, (1.1e)

where D
Dt

= ∂
∂t

+ u ∂
∂x

+ v ∂
∂y

+ w ∂
∂z

is the three dimensional advective derivative. We use

the same nondimensionalization as in earlier work (Biello and Majda, 2006; Majda, 2007).

Both the density ρ = ρ (z) and the buoyancy frequency N = N (z) are in dimensionless units
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Table 1.1: The dimensional units for all physical variables and some constant parameters.
Here square brackets mean the value of one unit of the dimensionless variables corresponding
to the given scale.

Physical quantity Mathematical symbol Value

Froude number ε 0.1
Gravity wave speed c 50m/s
Brunt-vaisala frequency N 0.01s−1

Troposphere height HT 16km

Equatorial time scale TE (cβ)−1/2 = 8.3h

Equatorial deformation radius LE (c/β)1/2 = 1500km
Synoptic scale [x, y] LE = 1500km
vertical scale [z] HT/π = 5km
Daily scale [t] TE = 8.3h
Zonal planetary scale [X] LP = LE/ε = 15000km
Intraseasonal scale [T ] TI = TE/ε = 3.5day

and could depend only on the height. The Eqs. (1.1a-1.1e) have been nondimensionalized

so that time is measured in units of the equatorial time scale TE = (cβ)−1/2 ≈ 8.3h, the

horizontal length scale is in units of the equatorial deformation radius LE = (c/β)1/2 =

1500km, the vertical length scale is in units of the troposphere height divided by π, H =

HT/π ≈ 5km. Here c is defined as the dry Kelvin wave speed and β denotes the Rossby

parameter in the Beta plane approximation. The horizontal velocity is scaled to the dry

Kelvin/gravity wave speed c = 50m/s and the vertical velocity is scaled to this wave speed

c multiplied by the aspect ratio between the vertical length scale and the horizontal length

scale, (H/LE) c ≈ 0.16m/s. The potential temperature scale is equal to the mean potential

temperature difference over one unit of the vertical scale H, Θ = N2θ0H/g = 15.3K, where

we assume a constant buoyancy frequency N = 10−2s−1 and a mean potential temperature

θ0 = 300K. N2 has units s−2 and is referred as the Brunt-Vaisala frequency. In Eq. 1.1c,

θ denotes the potential temperature deviation from the mean potential temperature. The

free troposphere occupies the domain −20 × 103km ≤ x ≤ 20 × 103km, −5 × 103km ≤

y ≤ 5 × 103km, 0 ≤ z ≤ 16km. The dimensional units for all physical variables and some

constant parameters are summarized in Table 1.1.
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In Eqs.1.1a-1.1e, the zonal and meridional momentum forcings Su, Sv include momentum

dissipation. To parameterize the momentum dissipation, we employ a linear drag law closure.

The parameter d is the inverse linear damping time scale of the momentum dissipation. Here

the dissipation time scale is ascribed to cumulus drag, which has been estimated to be about

5 days from observations of large-scale tropical flows (Lin et al., 2005; Romps, 2014). Since

the equatorial time scale is TE = (cβ)−
1
2 ≈ 8.3h ≈ 1

3
day, the value of the dissipation rate

is d = 1
15

= 0.07. Thus we rewrite the horizontal momentum forcings as−εdu + Su in Eq.

(1.1a) and −εdv + Sv in Eq. (1.1b), where d = 0.7 and Su, Sv account for all extra forcings.

The thermal forcing Sθ includes radiative damping. Here we use a linear Newtonian

cooling law −dθθ. Given that the observational estimates for the cooling time scale are

of the order 15 days and the equatorial time scale is TE = (cβ)−
1
2 ≈ 8.3h ≈ 1

3
day, the

dimensionless value of the radiative damping rate is dθ = 1
45

= 0.023. Thus we rewrite the

thermal forcing as −εdθθ + Sθ in Eq. (1.1c), where dθ = 0.23 and Sθ accounts for all extra

forcings such as latent heat release during tropical precipitation.

By incorporating the momentum dissipation and radiative damping terms into the prim-

itive equations (1.1a-1.1e), we can rewrite them as

D

Dt
u− yv = −px − εdu+ Su (1.2a)

D

Dt
v + yu = −py − εdv + Sv (1.2b)

D

Dt
θ +N2w = −εdθθ + Sθ (1.2c)

pz = θ (1.2d)

(ρu)x + (ρv)y + (ρw)z = 0 (1.2e)

The derivation of the multi-scale model in this chapter is based on the following three basic

assumptions (Majda, 2007):

Assumption 1: Low Froude number. Since the reference flow speed c = 50m/s is much
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faster than the real flow speed on the synoptic or larger scales in the tropical troposphere,

the Froude number, which is defined as the ratio between the typical horizontal velocity

magnitude and the basic wave speed Fr = U/c = ε, is assumed to be small. The dimensionless

horizontal flow field uh = (u, v) is rewritten as uh = εuh,1, where one dimensionless unit of

the magnitude of uh,1 means εc = 5m/s.

Assumption 2: Weak potential temperature anomalies. The potential temperature

deviation has been nondimensionalized as the temperature scale (15K), the mean potential

temperature difference over one unit of the vertical length scale. However, the real potential

temperature deviation θ, whose value is several Kelvin in the tropical troposphere (Lin and

Johnson, 1996; Yanai et al., 2000), is much smaller than that. Thus the dimensionless

potential temperature deviation can be rewritten as θ = εθ1, where one dimensionless unit

of θ1 means εΘ = 1.5K.

Assumption 3: Although the momentum forcing Su, Sv and the thermal forcing Sθ

have been nondimensionalized to 150m/s/day, 45K/day, the measured atmospheric flow is

much weaker than the corresponding dimensional units. For example, the measured heating

associated with latent heat release in the tropics on the synoptic and larger scales is only

several Kelvin per day. Thus we can rewrite the momentum and thermal forcings as Su =

εSu,1, Sθ = εSθ,1, where one dimensionless unit of Su,1 means 15m/s/day. and that of Sθ,1

means 4.5K/day.

The ansatz we use in this multi-scale model is such that all physical variables can be

approximated by functions which vary on two zonal spatial scales and two temporal scales.

Specifically, two zonal spatial scales are the synoptic scale (LE = 1500km) and the planetary

scale (LP = 15000km). Two temporal scales are the daily time scale (TE = 8.3h) and the

intraseasonal time scale (TI = 3.5days). Since ten units of this time scale span more than

one month, TI is an intraseasonal time scale. In general, for an arbitrary function f such as
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physical variables u, v, w, p, θ, we can have

f (x, t, y, z) = f ε (x,X, t, T, y, z) , (1.3)

where we introduce the planetary-scale zonal variable X = εx, and the intraseasonal time

scale variable T = εt, and y, z are on the synoptic scale. The implicit meaning in the ansatz

(1.3) is that all physical variables can vary an amount of order one but no more than order

one if any of the independent variables x,X, t, T, y, z vary an amount of order one, in order

to guarantee the validity of the multi-scale asymptotics.

By assuming multi-scale solutions as Eq. (1.3), the zonal and time derivatives are given

by chain rule

∂f ε

∂x
+ ε

∂f ε

∂X
,
∂f ε

∂t
+ ε

∂f ε

∂T
. (1.4)

In order to consider averages of physical variables on the small spatial and temporal

scales, we use the following averaging operators

f̄ (X, t, T, y, z) = lim
L→∞

1

2L

∫ L

−L
f (x,X, t, T, y, z) dx, (1.5)

〈f〉 (x,X, T, y, z) = lim
T ∗→∞

1

2T ∗

∫ T ∗

−T ∗
f (x,X, t, T, y, z) dt. (1.6)

For an arbitrary function f , we can have its zonal spatial average f̄ , therefore f = f̄ +f ′

and f ′ satisfies f̄ ′ = 0. Similarly, we can have its temporal average 〈f〉, therefore f = 〈f〉+ f̃

and f̃ satisfies
〈
f̃
〉

= 0. In order to guarantee the validity of the multi-scale asymptotics,

all physical variables need to satisfy the solvability condition called the sublinear growth

condition, which requires that the asymptotic expansion should grow sublinearly in (x,t)

to avoid secular terms (Majda, 2003). In general, we have the following conditions for all

variables in asymptotic expansion ∂
∂x
f = 0,

〈
∂
∂t
f
〉

= 0.
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With the assumptions of the low Froude number, the weak temperature gradient and

that for momentum and thermal forcing magnitude, we are ready to write down the ansatz

for all physical variables on multiple spatiotemporal scales (Majda and Klein, 2003; Majda,

2007)

g = ε
[
g
′
(x,X, t, T, y, z) + ḡ (X, t, T, y, z)

]
+ ε2g2, g ∈ {u, v, w, θ, p, Su, Sv, Sθ} (1.7)

Now we can derive the multi-scale model, the detailed steps of the derivation can be

found in Appendix 1.6.1.

1.2.1 The planetary-scale system

Substituting the ansatz (1.7) into Eqs. (1.2a-1.2e) and collecting all terms at the leading

order yields a linear system. Now we take zonal spatial averaging over the synoptic scale,

and get the planetary-scale system

ūt − yv̄ = S̄u, (1.8a)

v̄t + yū = −p̄y + S̄v, (1.8b)

θ̄t +N2w̄ = S̄θ, (1.8c)

p̄z = θ̄, (1.8d)

v̄y +
1

ρ
(ρw̄)z = 0, (1.8e)

which describes the planetary-scale flow field. This system includes the planetary-scale

inertial waves on the equatorial β−plane. A crucial property of this system is that it is a

linear system without advective effects since the weak advection terms are at the second

order. After zonal spatial averaging, this flow field is zonally symmetric on the synoptic

scale. In addition, since there is no derivative with respect to the planetary scale X , it can
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be regarded as a frozen parameter in the the resulting flow field. Also, one dimensionless

unit of horizontal velocity corresponds to 5m/s and that of potential temperature deviation

corresponds to 1.5K. Therefore, this system allows the momentum forcing to be roughly

15m/s/day and the thermal forcing to be roughly 4.5K/day.

1.2.2 The synoptic-scale system

By subtracting the planetary-scale system (1.8a-1.8e) from the leading-order asymptotic

equations, we can derive the synoptic-scale system (Majda, 2007)

u
′

t − yv
′
= −p′x + S

′

u (1.9a)

v
′

t + yu
′
= −p′y + S

′

v (1.9b)

θ
′

t +N2w
′
= S

′

θ (1.9c)

p
′

z = θ
′

(1.9d)

u
′

x + v
′

y +
1

ρ

(
ρw

′
)
z

= 0 (1.9e)

which describes the synoptic-scale fluctuations of the flow field. These synoptic-scale fluctu-

ating flows are characterized by linear equations without advective effects. Also, the momen-

tum dissipation and radiative damping do not directly affect these synoptic-scale fluctuating

flows since they are at the second order.

1.2.3 The leading-order planetary scale system on the intrasea-

sonal time scale

Since the daily time scale t is the fast time scale compared with the intraseasonal time scale

T , it is required that 〈∂g/∂t〉 = 0 for any bounded function g to guarantee the validity of

the asymptotics. We do time averaging on Eqs. (1.8a,1.8c,1.8e) , and get the leading-order

18



planetary scale system on the intraseasonal time scale (Biello and Majda, 2006)

−y 〈v̄〉 =
〈
S̄u
〉
, (1.10a)

N2 〈w̄〉 =
〈
S̄θ
〉
, (1.10b)

(〈v̄〉)y +
1

ρ
(ρ 〈w̄〉)z = 0. (1.10c)

Since the meridional velocity 〈v̄〉 on the planetary/intraseasonal scales is directly de-

termined by the zonal momentum forcing
〈
S̄u
〉

and the vertical velocity 〈w̄〉 on the plan-

etary/intraseasonal scales is directly determined by
〈
S̄θ
〉
, we obtain a constraint when we

combine Eqs. (1.10a,1.10b) with the incompressibility condition (1.10c):

(〈
S̄u
〉

y

)
y

=
1

ρ

(
ρ

〈
S̄θ
〉

N2

)
z

. (1.11)

Intuitively, this is not an unphysical requirement since a steady climatology requires a

strict balance between the zonal momentum forcing and the thermal forcing. Also, if we do

time averaging on Eqs. (1.8b,1.8d), we get

y 〈ū〉 = −〈p̄〉y +
〈
S̄v
〉
, (1.12)

〈p̄〉z =
〈
θ̄
〉
, (1.13)

which are the geostrophic balance in the meridional direction if
〈
S̄v
〉

= 0 and the hydrostatic

balance for the leading-order terms 〈p̄〉 ,
〈
θ̄
〉
.

1.2.4 The planetary-scale system on the daily time scale

We can further divide each planetary-scale physical variable into a long-time average and a

fluctuation variable, that is ḡ = 〈ḡ〉 + ˜̄g where ˜̄g satisfies 〈˜̄g〉 = 0. By subtracting the time

mean equations (1.10a-1.10c, 1.12, 1.13) on the planetary/intraseasonal scales from Eqs.
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(1.8a-1.8e), we derive the planetary-scale system on the daily time scale

˜̄ut − y˜̄v = ˜̄Su (1.14a)

˜̄vt + y ˜̄u = − ˜̄py + ˜̄Sv (1.14b)

˜̄θt +N2 ˜̄w = ˜̄Sθ (1.14c)

˜̄pz = ˜̄θ (1.14d)

˜̄vy +
1

ρ
(ρ ˜̄w)z = 0 (1.14e)

which describes the daily time scale fluctuations of the planetary-scale flow. These equations

are linear and do not have advection terms. Also, the flow does not depend on the zonal

synoptic scale. More importantly, since all physical variables vanish after the time averaging

〈˜̄g〉 = 0, this system is a good candidate for the planetary-scale equatorial inertial oscillations

to mimic the diurnal cycle of tropical convection. We model the diurnal cycle through this

system in section 1.3.

1.2.5 The second-order planetary scale system on the intrasea-

sonal time scale

Now we consider the asymptotic expansion of the primitive equations at the second order

following (Majda, 2007). After zonal spatial and temporal averaging on the zonal momentum

equation (1.2a), the thermal equation (1.2c), and the mass conservation (1.2e), all terms at

the second order are collected and form the second-order planetary scale system on the
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intraseasonal time scale, when they are combined with Eqs. (1.12-1.13)

D

DT
〈ū〉 − y 〈v̄2〉 = −〈p̄〉X − d 〈ū〉 −

∂

∂y

〈
v′u′

〉
− 1

ρ

∂

∂z

(
ρ
〈
w′u′

〉)
− ∂

∂y
〈˜̄v ˜̄u〉 − 1

ρ

∂

∂z
(ρ 〈 ˜̄w ˜̄u〉) +

〈
S̄u,2

〉 (1.15a)

y 〈ū〉 = −〈p̄〉y +
〈
S̄v
〉

(1.15b)

D

DT

〈
θ̄
〉

+N2 〈w̄2〉 = −dθ
〈
θ̄
〉
− ∂

∂y

〈
v′θ′
〉
− 1

ρ

∂

∂z

(
ρ
〈
w′θ′

〉)
− ∂

∂y

〈
˜̄v ˜̄θ
〉
− 1

ρ

∂

∂z

(
ρ
〈

˜̄w ˜̄θ
〉)

+
〈
S̄θ,2
〉 (1.15c)

〈p̄〉z =
〈
θ̄
〉

(1.15d)

〈ū〉X + 〈v̄2〉y +
1

ρ
(ρ 〈w̄2〉)z = 0 (1.15e)

where D
DT

= ∂
∂T

+ 〈v̄〉 ∂
∂y

+ 〈w̄〉 ∂
∂z

, this system is advected by the leading-order merid-

ional and vertical velocity in section 1.2.3. This system describes the evolution of

〈ū〉 , 〈p̄〉 ,
〈
θ̄
〉
, 〈v̄2〉 , 〈w̄2〉 on the planetary/intraseasonal scales. The difference between this

system and the leading-order planetary scale system on the intraseasonal time scale (Eqs.

1.10a-1.10c) is that the zonal momentum equation and thermal equation here are forced

by eddy flux divergences of momentum and temperature from the synoptic scale and the

daily time scale, as shown on the right side of Eqs. (1.15a, 1.15c). There are two pieces of

upscale flux divergences in each equation. The first piece corresponds to the spatial upscale

feedback from the synoptic scale to the planetary scale and comprises both meridional and

vertical components. The second piece corresponds to the temporal upscale feedback from

the daily time scale to the intraseasonal time scale and also comprises meridional and ver-

tical components. These two pieces of eddy flux divergence of momentum and temperature

force the planetary/intraseasonal scale flows (Eqs. 1.15a-1.15e) in a linear way. According

to the physical observation that the dissipation time scales of the momentum damping and

the radiative damping are both on the intraseasonal time scale, the planetary/intraseasonal
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scale circulation anomalies described here are subject to this momentum dissipation and

radiative damping. This system includes not only the eddy flux divergences of momentum

and temperature from the synoptic scale, which have already been explored in the IPESD

model (Majda and Klein, 2003; Majda and Biello, 2004; Biello and Majda, 2005, 2006), but

also those from the daily time scale, providing a more general framework to assess upscale

effects.

1.3 A Model for the Diurnal Cycle and Upscale Fluxes

The diurnal variability of tropical precipitation over land and oceans has been documented in

Kikuchi and Wang (2008). By applying empirical orthogonal functions (EOF) analysis to two

TRMM datasets, they confirmed the persistence of the diurnal cycle of tropical precipitation

whose amplitude is relatively large in the continental regime and weak in the oceanic regime.

Furthermore, the significant variability of tropical precipitation due to the diurnal cycle of

solar heating is examined in the context of simple models for tropical convection (Frenkel

et al., 2011a,c, 2013). These models utilize three cloud types (congestus, deep and stratiform)

to characterize organized tropical convection. Since the latent heat can drive the atmospheric

flow through thermodynamics, the diurnal cycle of tropical precipitation can induce the

diurnal variability of the flow field in the tropical troposphere. In this section, we build a

model for the diurnal cycle, and discuss the planetary-scale inertial oscillations on the daily

time scale as well as the resulting upscale fluxes on the planetary/intraseasonal scale.

We start from the planetary-scale system on the daily time scale (1.14a-1.14e) and assume

that there is only thermal forcing ˜̄Sθ associated with latent heat release, but no momentum

forcing ˜̄Su,
˜̄Sv. Also, we assume the buoyancy frequency N2 and the density ρ to be constant

so that their dimensionless values are equal to 1 and the Boussinesq approximation is used.

Although the density profile in the realistic atmosphere changes dramatically with the height,

such distinction does not change the qualitative conclusion and makes for more streamlined
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notation.

˜̄ut − y˜̄v = 0 (1.16a)

˜̄vt + y ˜̄u = − ˜̄py (1.16b)

˜̄θt + ˜̄w = ˜̄Sθ (1.16c)

˜̄pz = ˜̄θ (1.16d)

˜̄vy + ˜̄wz = 0 (1.16e)

here we assume rigid lid boundary conditions at top and bottom of the troposphere

˜̄w (x,X, t, T, y, z) |z=0,π= 0, (1.17)

where in dimensionless form z = 0 represents the surface of the earth and z = π represents

the top of the troposphere.

Since we use the thermal forcing ˜̄Sθ in Eq. (1.16c) to represent the latent heat release

during precipitation from clouds, a good cloud model can provide an appropriate heating

profile. For example, the multicloud model convective parameterizations (Khouider and

Majda, 2006a,b,c) based on three cloud types (congestus, deep and stratiform) have been

revealed to be very useful in reproducing key features of organized convection and tropical

precipitation in the continental regime (Frenkel et al., 2011c). These three cloud types

serve to provide the bulk of tropical precipitation and the main source of latent heat in the

troposphere. In detail, cumulus congestus clouds heat the lower troposphere through latent

heat release and cool the upper troposphere due to detrainment and the high reflectivity at

the tops of clouds. Deep convective clouds warm and dry the entire troposphere, and release

the majority of tropical precipitation. Stratiform clouds warm the upper troposphere through

precipitation and cool the lower troposphere through evaporation of rain from stratiform

clouds. To mimic the vertical structure of the three clouds types introduced above, we
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assume that the thermal forcing ˜̄Sθ is based on the first two baroclinic modes in the free

troposphere. Earlier examples of models with heating defined by two baroclinic modes

include (Haertel and Kiladis, 2004) and (Biello and Majda, 2005). In addition, the figure

3 in (Kikuchi and Wang, 2008) indicates that the principle component time series of the

two leading empirical orthogonal functions have dominant diurnal periodicity in sinusoidal

variation. In general, we can prescribe this heating forcing as follows

˜̄Sθ = H1 (y) sin (kX + ωt) (− sin (z)) + αH2 (y) sin (kX + ωt+ β) (−2 sin (2z)) (1.18)

where both H1 (y) and H2 (y) depend only on y and are used to represent the meridional

profile of the heating. The diurnal cycle frequency ω is 2π in units of day−1 and the wavenum-

ber k is π/20 in units of 10−3km−1. Two specific examples are examined in the following

subsections.

1.3.1 A simple heating profile in the first two baroclinic modes

The three cloud types (congestus, deep convective, stratiform) and their life cycle have been

investigated through observations of organized tropical convection (Johnson et al., 1999;

Mapes et al., 2006). In this cloud life cycle, congestus clouds serve to moisten and precondi-

tion the middle troposphere prior to deep convection. Deep convective clouds warm and dry

the entire troposphere through large amounts of rainfall. Then stratiform clouds warm and

dry the upper troposphere, cool and moisten the lower troposphere after deep convection.

Using the multicloud model (Khouider and Majda, 2006a,b,c), Frenkel et al. (2011c) suc-

cessfully reproduce several key features of the realistic tropical precipitation over continental

regions by building simple multicloud models with the first two baroclinic modes of vertical

structure in the free troposphere as well as the bulk atmospheric boundary layer dynamics.

By identifying a cycle of five phases for the diurnal cycle of precipitation over land, they

explained the underlying physical mechanism and dynamical behaviors in terms of the in-
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teractions of the three cloud types with the periodically forcing boundary layer dynamics.

Some of the key features are as follows. In the early morning, direct solar heating produces

convective activity and detrainment of shallow clouds from the boundary layer. In the late

morning/early afternoon, congestus heating slightly warms the lower troposphere and cools

the upper troposphere, which delays the reinitiation of deep convection. Meanwhile, the

shallow cumulus entrainment and detrainment fluxes moisten the middle atmosphere and

precondition deep convection. In the late afternoon, the massive amount of precipitation is

released in the explosive afternoon deep convection episode, which warms the entire tropo-

sphere through latent heat. After sunset, the moisture recovers quickly and the troposphere

nearly reaches a radiative-convective equilibrium (RCE) state by balancing precipitation

and the imposed radiative cooling. Here we try to prescribe such thermal forcing which is

qualitatively consistent with those key features.

Suppose deep convective clouds in the first baroclinic mode and congestus/stratiform

clouds in the second baroclinic mode only have the first two parabolic cylinder functions as

their meridional profiles, we can prescribe the heating as follows

˜̄Sθ = sin (kX + ωt)
[
φ0|1 + γφ1|1

]
(− sin (z)) +α sin (kX + ωt+ β)

[
φ0|2 + γφ1|2

]
(−2 sin (2z))

(1.19)

where
{
φm|q

}
are functions of y, m = 0, 1; q = 1, 2 as shown in the left panel of Fig. 1.1.

The relative strength of the second baroclinic mode α = 1
3

and the phase draft β = π
4

are two

constant parameters which are used to control the spatial pattern of the heating at a specific

season without the intraseasonal time scale dependence. We can change the meridional

profiles H1 = φ0|1 + γφ1|1 and H2 = φ0|2 + γφ1|2 by adjusting the value of parameter γ.

For simplicity, here we only choose the leading two meridional modes for each baroclinic

mode to mimic different meridional profiles of the heating in different seasons. If γ = 0

, H1 and H2 are symmetric about the equator, which can be used to mimic the equinox

case. If γ = 1, H1 and H2 reach the maximum value at a positive y value in the northern
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Figure 1.1: The left figure shows meridional profile φm|q,m = 1, 2; q = 1, 2. The right figure
shows heating profile around the equator during equinox at y = 0 and γ = 0. Heating is in
units of 4.5Kday−1.

hemisphere. If γ = −1, H1 and H2 reach the maximum value at a negative y value in the

southern hemisphere. The time evolution of the heating vertical profile is depicted in the

right panel of Fig. 1.1, where the heating center moves from the lower troposphere to the

middle troposphere and finally reaches the upper troposphere, consistent with the cloud life

cycle, from congestus clouds in the lower troposphere to deep convective clouds throughout

the whole troposphere and to stratiform clouds in the upper troposphere. The curves on the

left panel show different meridional profiles of heating during equinox and boreal summer,

which is consistent with the observation that in annual mean (γ = 0), the heating mainly

centers in the continental regime around the equator and during boreal summer (γ = 1), the

heating reaches the maximum value in the continental regime of the northern hemisphere

(Kikuchi and Wang, 2008).

With the explicit solutions (Appendix 1.6.2) for the planetary-scale system on the daily

time scale(1.16a-1.16e), we can calculate the inertial oscillations in the diurnal cycle and the

eddy flux divergences of momentum and temperature F u, F θ that appear in the second-order
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planetary scale system on the intraseasonal time scale (1.15a-1.15e)

F u = − ∂

∂y
〈˜̄v ˜̄u〉 − ∂

∂z
〈 ˜̄w ˜̄u〉 (1.20)

F θ = − ∂

∂y

〈
˜̄v ˜̄θ
〉
− ∂

∂z

〈
˜̄w ˜̄θ
〉

(1.21)

Several features of these eddy flux divergences are important. First, F u, F θ do not depend

on the daily time scale t, but they can still vary on the intraseasonal time scale T in general.

Secondly, since upscale flux divergences F u, F θ are induced by the diurnal cycle heating

in the first and second baroclinic modes, it can be shown that upscale flux divergences

F u, F θ are in the first and third baroclinic modes (Appendix 1.6.2), and the third baroclinic

mode provides extensive vertical structure to capture more realistic features. Thirdly, the

magnitudes of F u, F θ are proportional to α sin (β). If α = 0, the heating ˜̄Sθ is vertically

symmetric with respect to the middle layer of the whole troposphere since there exists only

the deep convective clouds in the first baroclinic mode. If β = 0, the first baroclinic mode

for deep convective clouds and the second baroclinic mode for congestus/stratiform clouds

are in phase. In both two cases above, F u, F θ are zero, meaning that there is no upscale

transport of kinetic and thermal energy to the planetary/intraseasonal scales.

Now, we adjust the parameter γ in the expression of ˜̄Sθ to mimic the equinox case and

boreal summer case, calculate the corresponding planetary-scale flow on the daily time scale,

and discuss eddy flux divergences of momentum and temperature F u, F θ in Fig. 1.2.

During boreal summer, the maximum dimensionless magnitude of F u is around 0.1 and

that of F θ is around 1, which corresponds to 0.15m/s/day for momentum forcing and

0.45K/day for thermal forcing on the planetary/intraseasonal scales. Since the thermal

forcing is nondimensionalized by 0.45K/day, there is significant eddy flux divergence of tem-

perature. The maximum dimensionless magnitude of the thermal forcing F θ is about 10

times that of the momentum forcing F u. Thus the eddy flux divergence of temperature

dominates. Several features of the thermal forcing F θ are important. First, there is strong
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heating in the middle troposphere and cooling in the the upper and lower troposphere, in the

northern hemisphere, and even the whole troposphere around the equator. The maximum

dimensionless magnitude of heating is three times that of cooling, which is intuitively un-

derstandable because F u, F θ are in the first and third baroclinic modes. Secondly, although

the vertical component − ∂
∂z

〈
˜̄w ˜̄θ
〉

of F θ is a little stronger than the meridional component

− ∂
∂y

〈
˜̄v ˜̄θ
〉

, they are still comparable and form the significant thermal forcing F θ. However,

for momentum forcing F u, its meridional component − ∂
∂y
〈˜̄v ˜̄u〉 is extremely weak and its

vertical component − ∂
∂z
〈 ˜̄w ˜̄u〉 dominates but is still weak. Lastly, we can find the unphysical

weak heating in the southern hemisphere due to the simplicity of the heating profile (1.19).

During equinox, both F u, F θ shown in the lower panels of Fig. 1.2 are quite weak. Thus

we conclude that there is quite weak direct intraseasonal impact of the diurnal cycle during

equinox, although there is also a possible indirect effect of the diurnal cycle on synoptic and

mesoscale dynamics, which in turn may impact the intraseasonal scale dynamics.

1.3.2 A heating profile in the first two baroclinic modes with the

same meridional profile

To prescribe a more physical heating profile without loss of generality, we assume that

the first baroclinic mode for deep convection clouds and the second baroclinic mode for

congestus/stratiform clouds share the same meridional profile, that is H1 (y) = H2 (y) in Eq.

(1.18). In detail, the meridional profile of the diurnal cycle heating is prescribed as

H (y) = H0e
−a(y−y0)2 . (1.22)

Fig. 1.3 depicts the heating profile with the meridional profile specified in Eq. (1.22).

According to the meridional profile in Eq. (1.22), the diurnal cycle heating is centered at

the latitude given by y0. By varying the value of y0, we are able to mimic different heating
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———————————————————————————————————————–

Figure 1.2: The upper figure shows eddy flux divergences of momentum and temperature
F u, F θ during boreal summer. The lower figure is for the equinox case. In each figure, the
eight panels show (a) meridional profile of heating; (b) eddy flux divergence of momentum F u;
(c) its meridional component − ∂

∂y
〈˜̄v ˜̄u〉; (d) it vertical component − ∂

∂z
〈 ˜̄w ˜̄u〉; (e) meridional

profile of heating; (f) eddy flux divergence of temperature F θ; (g) its meridional component

− ∂
∂y

〈
˜̄v ˜̄θ
〉

; (h) its vertical component − ∂
∂z

〈
˜̄w ˜̄θ
〉

. One dimensionless unit of F u is 1m/s/day

and that of F θ is 0.45K/day.
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Figure 1.3: The meridional profile of heating during equinox is shown in the left panel and
that during boreal summer is shown in the middle panel. The meridional profile in the
middle panel takes its maximum at y = 1200km, 10.8oN . The right panel shows the height
and time diagram of the diurnal cycle heating. Here red means heating(positive) and blue

means cooling(negative). One unit of ˜̄Sθ is 4.5K/day.

profiles in different seasons, as observed in (Kikuchi and Wang, 2008). During equinox,

y0 = 0 means that the heating reaches maximum at the equator. Here we set a = 2, H0 = 1

so that the strength of the heating drops to 1/e of its maximum magnitude around latitudes

y = ±1000km, which qualitatively matches the spatial pattern of diurnal precipitation in

the annual mean. During boreal summer, y0 = 0.8 means 1200km away from the equator

in the northern hemisphere. Here we set a = 2, H0 = 1 so that the strength of the heating

drops to 1/e of its maximum magnitude at latitudes y = 2300km, y = 140km, which also

qualitatively matches the spatial pattern of diurnal precipitation during boreal summer.

Since the spatial patterns of the diurnal precipitation in different seasons are different, in

the following content, we will always discuss the equinox case and the boreal summer case

respectively.

Now we adjust the parameter y0 in the expression of ˜̄Sθ for the equinox case and boreal
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summer case, calculate the corresponding planetary-scale flow on the daily time scale, and

discuss eddy flux divergences of momentum and temperature F u, F θ (1.20-1.21) in Fig. 1.4.

During boreal summer, the resulting eddy flux divergences of momentum and temperature

share many similar properties as the case in Section 1.3.1. The most crucial property is

that the thermal forcing F θ on the planetary/intraseasonal scales is still strong , meaning

that there is significant upscale flux feedback of temperature and the eddy flux divergence

of temperature F θ dominates. There is strong heating in the middle troposphere of the

northern hemisphere and cooling surrounding the heating center and at higher latitudes of

the northern hemisphere. During equinox, both F u, F θ are quite weak, so there is weak

intraseasonal impact of the diurnal cycle during equinox.

1.4 The Intraseasonal Impact of the Diurnal Cycle on

the Planetary Scale

In this section, the planetary-scale circulation on the intraseasonal time scale is studied.

According to the multi-scale asymptotic results in section 1.2, there are two systems on the

planetary/intraseasonal scales. The first system (Eqs. 1.10a-1.10c) deals with the winds

〈v〉 , 〈w〉, which is derived from the leading-order asymptotic expansion of the primitive

equations(1.2a-1.2e). Since the dimensional units of 〈v〉 , 〈w〉 are 5m/s, 1.6cm/s, respec-

tively, this system can be utilized as a model for the Hadley cell. The second system (Eqs.

1.15a-1.15e) is about 〈ū〉 , 〈p̄〉 ,
〈
θ̄
〉
, 〈v̄2〉 , 〈w̄2〉 , which is derived from the second-order asymp-

totic expansion of the primitive equations (1.2a-1.2e). The dimensional units of 〈v2〉 , 〈w2〉

are 0.5m/s, 0.16cm/s, thus 〈v2〉 , 〈w2〉 can be understood as the circulation anomalies on the

planetary/intraseasonal scales induced by the diurnal cycle heating driving eddy flux diver-

gences F u, F θ. The objective here is to understand the nature of the planetary/intraseasonal

scale circulation anomalies that arise from different diurnal cycle heating patterns during
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Figure 1.4: The upper figure shows eddy flux divergences of momentum and temperature
F u, F θ during boreal summer (y0 = 0). The lower figure is for an equinox case (y0 = 0.8). In
each figure, the six panels show (a) eddy flux divergence of momentum F u; (b) its meridional
component − ∂

∂y
〈˜̄v ˜̄u〉; (c) its vertical component − ∂

∂z
〈 ˜̄w ˜̄u〉; (d) eddy flux divergence of tem-

perature F θ; (e) its meridional component − ∂
∂y

〈
˜̄v ˜̄θ
〉

; (f) its vertical component − ∂
∂z

〈
˜̄w ˜̄θ
〉

.

One dimensionless unit of F u is 1m/s/day and that of F θ is 0.45K/day.
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equinox and boreal summer.

1.4.1 A Model for the Hadley cell

The Hadley circulation consists of two overturning thermally direct cells in the low lati-

tudes of both hemispheres. Observations indicate that two Hadley cells, symmetric about

the equator, are rarely observed even in the equinoctial seasons. In boreal summer or win-

ter, the winter hemisphere branch of the Hadley cell is much stronger than the summer

hemisphere branch (Holton and Hakim, 2012). In fact, Eqs. (1.23a-1.23c) are derived

from the leading-order asymptotic expansion of the primitive equations (1.2a-1.2e), and

〈v〉 , 〈w〉 ,
〈
S̄u
〉
,
〈
S̄θ
〉

are on the planetary/intraseasonal scales. The dimensional units of〈
S̄u
〉
,
〈
S̄θ
〉

are 15m/s/day, 4.5K/day separately, and the dimensional units of 〈v̄〉 , 〈w̄〉 are

5m/s, 1.6cm/s separately. Here we assume the buoyancy frequency N2 and the density ρ to

be constant.

−y 〈v̄〉 =
〈
S̄u
〉

(1.23a)

N2 〈w̄〉 =
〈
S̄θ
〉

(1.23b)

(〈v̄〉)y + 〈w̄〉z = 0 (1.23c)

Considering that Eqs. (1.23a-1.23c) describe the leading-order planetary scale flow on the

intraseasonal time scale, we can use them to model the Hadley cell. Since the meridional

velocity 〈v̄〉 is directly determined by the momentum forcing
〈
S̄u
〉

and the vertical velocity

〈w̄〉 is determined by the heating
〈
S̄θ
〉
, there is a strict balance between the momentum forc-

ing
〈
S̄u
〉

and the heating
〈
S̄θ
〉
. If we combine Eqs. (1.23a,1.23b) with the incompressibility

condition (1.23c), we obtain

(〈
S̄u
〉

y

)
y

=

(〈
S̄θ
〉

N2

)
z

. (1.24)
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The system (1.23a-1.23c) is independent of other systems and only forced by the leading-

order zonal momentum forcing and thermal forcing on the planetary/intraseasonal scales.

Unless
〈
S̄u
〉
,
〈
S̄θ
〉

satisfy the constraint (1.24), these equations can not be solved. Such a

constraint is induced in this reduced model satisfying geostrophic balance in zonal direction

and weak temperature gradient in the thermal equation. In fact, such a constraint can be re-

laxed into a group of dynamical equations for trade winds and Hadley circulation by allowing

stronger planetary-scale zonal winds, pressure and potential temperature (Biello and Ma-

jda, 2010). In general, we can prescribe arbitrary
〈
S̄u
〉
,
〈
S̄θ
〉

satisfying the constraint(1.24)

and get the corresponding leading-order planetary/intraseasonal scale circulation. Here we

prescribe the momentum forcing
〈
S̄u
〉

and thermal forcing
〈
S̄θ
〉

to qualitatively match the

key features of the Hadley cell.

During equinox, the Hadley cell is symmetric about the equator. For each cell, there is

rising motion near the equator, poleward flow in the upper troposphere, descending motion

in the subtropics, and equatorward flow near the surface. The heating and zonal momentum

forcing are specified in Eq. 1.25-1.26. The spatial patterns of the forcings and the resulting

meridional and vertical flow field are shown in the upper panels of Fig. 1.5.

Sθ =
(
1− y2

)
e−y

2/2 sin (z) , (1.25)

Su = y

∫ y

−∞

(
1− s2

)
e−s

2/2ds cos (z) . (1.26)

During boreal summer, the winter hemisphere branch of the Hadley cell is much stronger

than the summer hemisphere branch. The heating and zonal momentum forcing are specified

in Eq. 1.27-1.28. The spatial patterns of the forcings and the resulting meridional and
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vertical flow field are shown in the lower panels of Fig. 1.5.

Sθ =
[
ye−y

2 − 0.2 (y − 2) e−2(y−2)2
]

sin (z) , (1.27)

Su = y

∫ y

−∞

[
se−s

2 − 0.2 (s− 2) e−2(s−2)2
]
ds cos (z) . (1.28)

1.4.2 A simplified version of the intraseasonal impact of the diur-

nal cycle

The second-order planetary scale system (1.15a-1.15e) on the intraseasonal time scale de-

scribes the planetary/intraseasonal scale dynamic response to the diurnal cycle of tropical

convection. It is derived from the second-order asymptotic expansion of the primitive equa-

tions (1.2a-1.2e). There are two pieces of eddy flux divergences of momentum in the zonal

momentum equation and two pieces of eddy flux divergences of temperature in the thermal

equation. In each equation, the first piece corresponds to upscale feedback from the synoptic

scale to the planetary scale, which has been utilized to successfully generate key features of

MJO (Majda and Biello, 2004; Biello and Majda, 2005, 2006). The second piece corresponds

to upscale feedback from the daily time scale to the intraseasonal time scale. In order to

consider the intraseasonal impact of the diurnal cycle in a simplified case, we consider the

zonally symmetric version of the second-order planetary scale system (Eqs. 1.15a-1.15e),

neglect the upscale feedback across multiple spatial scales and just focus on the upscale

feedback across multiple temporal scales. All synoptic-scale variables (u′, v′, p′, θ′, w′) are set

to zero. Also, we assume that there is no extra momentum forcing
〈
S̄u,2

〉
,
〈
S̄v,1
〉

and ther-

mal forcing
〈
S̄θ,2
〉

on the planetary/intraseasonal scales. To consider a simplified version,

we assume that there is no leading-order planetary/intraseasonal scale circulation in section

(1.4.1), which means there is no advection effects in the system (1.15a-1.15e) . Lastly, we

assume that the buoyancy frequency N2 and the density ρ are constants. To be brief, we

35



———————————————————————————————————————–

Figure 1.5: The upper three panels shows the equinox case. The lower three panels are
the boreal summer case. (a) zonal momentum forcing; (b) thermal forcing; (c) meridional
and vertical flow field. For zonal momentum forcing, blue means westward and red means
eastward. For thermal forcing, blue means cooling and red means heating. The units of〈
S̄u
〉
,
〈
S̄θ
〉
, 〈v̄〉 , 〈w̄〉 are 15m/s/day, 4.5K/day, 5m/s and 1.6cm/s respectively.
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rename all physical variables u = 〈ū〉 , p = 〈p̄〉 , θ =
〈
θ̄
〉
, v = 〈v̄2〉 , w = 〈w̄2〉, and we can

obtain a simplified version of the second-order planetary scale system on the intraseasonal

time scale

∂

∂T
u− yv = −du+ F u, (1.29a)

yu = −py, (1.29b)

∂

∂T
θ + w = −dθθ + F θ, (1.29c)

pz = θ, (1.29d)

vy + wz = 0. (1.29e)

We assume rigid lid boundary conditions at top and bottom of the troposphere,

w (X,T, y, z) |z=0,π= 0, (1.30)

where in dimensionless unit z = 0 represents the surface of the earth and z = π represents

the top of the troposphere. The momentum damping coefficient d is 1/5day−1 and the

temperature damping coefficient dθ is 1/15day−1. F u, F θ represent upscale feedback from

the daily scale to the intraseasonal time scale in the zonal momentum equation and the

thermal equation respectively

F u = − ∂

∂y
〈˜̄v ˜̄u〉 − ∂

∂z
〈 ˜̄w ˜̄u〉 ;F θ = − ∂

∂y

〈
˜̄v ˜̄θ
〉
− ∂

∂z

〈
˜̄w ˜̄θ
〉
. (1.31)

This system is driven by eddy flux divergences of momentum and temperature F u, F θ,

which are associated with the planetary-scale flow on the daily time scale (1.16a-1.16e). The

physical variables in this system consist of the leading-order physical variables u, p, θ and

the second-order physical variables v, w. The second-order meridional velocity v and vertical

velocity w can be understood as the planetary-scale circulation anomalies induced by the
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intraseasonal impact of the diurnal cycle of tropical convection. In the following discussion,

we consider the different behavior of the planetary/intraseasonal scale dynamics in Eqs.

(1.29a-1.29e,1.30) during equinox and boreal summer in an ideal zonally symmetric case.

In order to analyze the intraseasonal impact of the diurnal cycle of tropical convection, we

plot and discuss the planetary/intraseasonal scale steady state circulation corresponding to

eddy flux divergences F u, F θ. The forcings F u, F θ can be evaluated explicitly through Eq.

(1.31) [see Appendix 1.6.2] and the planetary/intraseasonal scale equations (1.29a-1.29e)

can be solved by spectral expansion techniques (Majda, 2003). The numerical method used

here follows Biello and Majda (2006).

Since two cases of diurnal cycle heating have been prescribed in section 1.3, here we first

consider the case with a simple heating profile utilizing the first two baroclinic modes in sec-

tion 1.3.1. The corresponding eddy flux divergences of momentum and temperature F u, F θ

shown in Fig. 1.2 are imposed into Eqs. (1.29a-1.29e). Fig. 1.6 shows all physical variables

in the meridional and vertical directions, including pressure p, potential temperature θ as

well as velocity components u, v, w.

During boreal summer, the dimensionless maximum magnitudes of all physical variables

are larger than 0.1 and that of potential temperature θ even reaches 1, which is intuitively

consistent with the significant eddy flux divergence of temperature F θ shown in Figure 1.2.

There are several crucial features of the resulting planetary/intraseasonal scale circulation.

First, for the meridional and vertical flow field, a circulation cell forms around the equator,

which is characterized by ascent in the northern hemisphere, southward motion in the upper

troposphere, descent around the equator and northward motion in the lower troposphere.

Secondly, the intraseasonal impact of the diurnal cycle on the planetary scale includes neg-

ative potential temperature anomalies in the lower troposphere. In a moist environment,

negative potential temperature anomalies in the lower troposphere can increase the con-

vective available potential energy(CAPE) and reduce the convective inhibition(CIN), which

enhances the buoyancy of parcels in the free troposphere and provides a favorable condition
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for tropical convection; also, the lower temperatures reduce the saturation value of water

vapor and promote more convection. Thirdly, there are several zonal jets at different height

and latitudes, providing more possible features of the planetary-scale circulation.

During equinox, the planetary/intraseasonal scale circulation response is very weak and

much less than 1, which is consistent with the weak eddy flux divergences F u, F θ shown in

Fig. 1.2. Therefore, we can conclude that there is weak planetary/intraseasonal scale direct

circulation response due to the diurnal cycle during equinox.

Now, we consider the heating profile with the first two baroclinic modes sharing the same

meridional profile, which is prescribed in section 1.3.2. Basically, during boreal summer,

the pressure, p, the potential temperature, θ, and the zonal velocity, u, have similar spatial

patterns and magnitudes as the case we discuss above. As for the meridional and vertical flow

field, a circulation cell still forms around the equator. Besides, there are two weak circulation

cells in the upper and lower troposphere around the equator and a strong downdraft at the

higher latitude in the northern hemisphere, providing more possible features of the planetary-

scale circulation. The results are shown in lower panels of Fig. 1.6.

1.4.3 A fully coupled version of the intraseasonal impact of the

diurnal cycle on the Hadley cell

In section (1.4.2), we neglect the advection effects of the leading-order meridional and vertical

flow field from the model for the Hadley cell (1.23a-1.23c) . Such a simplified version of the

planetary/intraseasonal scale circulation response can shed some light on the intraseasonal

impact of the diurnal cycle through Eqs. (1.29a-1.29e). As demonstrated in section 1.4.1

and Fig. 1.5, the system (1.23a-1.23c) on the planetary/intraseasonal scales is capable of

mimicking a Hadley cell by creating two circulation cells with the symmetric spatial pattern

during equinox and an asymmetric spatial pattern during boreal summer. Therefore, a

fully coupled version of the multi-scale model involving the Hadley cell can be utilized to
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Figure 1.6: The upper figure shows the large-scale flows induced by upscale flux divergences
F u, F θ during boreal summer corresponding to the heating in section 1.3.1. The lower figure
shows the case corresponding to the heating in section 1.3.2. (a) pressure p; (b) potential
temperature θ; (c) zonal velocity u; (d) meridional velocity v; (e) vertical velocity w; (f) the
meridional and vertical flow field. The units of p, θ, u, v, w are 250m2/s2,1.5 K,5 m/s,0.5
m/s,5 m/s,0.16 cm/s respectively.
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model more realistic atmospheric dynamics in the tropics for the intraseasonal impact of

the diurnal cycle. In this section, we add the mean flow from the model of the Hadley

cell (1.23a-1.23c) and consider how such advection effect from the mean flow can affect the

second-order planetary scale system on the intraseasonal time scale (1.15a-1.15e). Here we

still consider an ideal zonally symmetric case. All synoptic-scale variables (u′, v′, p′, θ′, w′) are

set to zero. There is no extra momentum forcing
〈
S̄u,2

〉
,
〈
S̄v,1
〉

and thermal forcing
〈
S̄θ,2
〉

on

the planetary/intraseasonal scales. Also, we assume that the buoyancy frequency N2 and the

density ρ are constants. To be brief, we rename all physical variables u = 〈ū〉 , p = 〈p̄〉 , θ =〈
θ̄
〉
, v = 〈v̄2〉 , w = 〈w̄2〉 and the Hadley cell flow field V = 〈v̄〉 ,W = 〈w̄〉, and obtain a fully

coupled version of the second-order planetary scale system on the intraseasonal time scale.

∂

∂T
u+ V

∂

∂y
u+W

∂

∂z
u− yv = −du+ F u (1.32a)

yu = −py (1.32b)

∂

∂T
θ + V

∂

∂y
θ +W

∂

∂z
θ + w = −dθθ + F θ (1.32c)

pz = θ (1.32d)

vy + wz = 0 (1.32e)

We assume rigid lid boundary conditions at top and bottom of the troposphere,

w (X,T, y, z) |z=0,π= 0 (1.33)

where in dimensionless unit z = 0 represents the surface of the earth and z = π represents

the top of the troposphere. This system is advected by the meridional and vertical velocity

components V,W from the model for the Hadley cell (1.23a-1.23c). F u, F θ (1.31) represent

upscale feedback from the daily scale to the intraseasonal time scale in the zonal momentum

equation and the thermal equation respectively.

Since the intraseasonal impact of the diurnal cycle of tropical convection during bo-
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real summer is much stronger than that during equinox, hereafter we only show the plan-

etary/intraseasonal scale circulation response to the eddy flux divergences F u, F θ during

boreal summer. The eddy flux divergences of momentum and temperature F u, F θ can be

evaluated explicitly through Eq. (1.31) (see Appendix 1.6.2). The only difference between

the fully coupled version (Eqs. 1.32a-1.32e) and the simplified version (Eqs. 1.29a-1.29e)

is that in this case there are advection effects from the model for the Hadley cell in Eqs.

(1.32a-1.32e). The planetary/intraseasonal scale equations (1.32a-1.32e) can still be solved

numerically by spectral expansion techniques (Majda, 2003) and the Galerkin method. The

basic idea behind the numerical method is that since the Hadley cell is in the first baro-

clinic mode, all the vertical modes in the solutions are coupled with each other due to the

advection effects. For each baroclinic mode, we use the Galerkin method and make sure

all equations are held for a finite set of basis functions. Instead of solving the problem

in each single baroclinic mode, we need to solve the problem by coupling all the vertical

modes together, including the baroclinic modes and the barotropic mode. The details for

the numerical method can be found at Appendix 1.6.3.

Since two kinds of diurnal cycle heating have been prescribed in section 1.3, we first

consider the case with a simple heating profile in the first two baroclinic modes as described

in section 1.3.1. The corresponding eddy flux divergences of momentum and temperature

F u, F θ shown in Fig. 1.2 are imposed into Eqs. (1.32a-1.32e). The upper panels of Fig. 1.7

show all physical variables in the meridional and vertical directions, including pressure p,

potential temperature θ, velocity components u, v, w as well as the meridional and vertical

components of the velocity field from sec. 1.4.1 and the modified Hadley cell.

There are several new features arising when we couple the model for the Hadley cell with

the planetary/intraseasonal scale circulation anomalies induced by the model of the diurnal

cycle. First, the maximum magnitude of the pressure p and the potential temperature θ

decreases, compared with the simple version shown in Fig. 1.6. Due to the advection effects

of the Hadley cell, the spatial patterns of the pressure p and the potential temperature
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θ become meridionally tilted. Secondly, the maximum magnitude of the zonal velocity u

increases and the spatial pattern of the zonal jets also changes, compared with the simple

case without advection effects in Fig. 1.6. In the present case, strong westerly winds form

in the middle troposphere of the northern hemisphere and strong easterly winds form in the

middle troposphere of the southern hemisphere. Thirdly, there exists a circulation cell at

the upper troposphere around the equator. According to the panels (g), (h) of Fig. 1.7, we

can find that such a circulation cell can strengthen the upper branch of the winter cell of the

Hadley circulation, since this circulation cell moves in the same direction of the Hadley cell.

Also, there exists another circulation cell in the lower troposphere around the equator. This

circulation cell moves in the opposite direction of the Hadley cell, thus it can weaken the

lower branch of the winter cell of the Hadley circulation. Finally, there are strong northward

winds in the middle troposphere around the equator where the center of the winter cell of

the Hadley circulation is located.

Now we consider the heating profile with the first two baroclinic modes sharing the same

meridional profile as prescribed in section 1.3.2. The lower panels of Fig. 1.7 show all

physical variables in the meridional and vertical directions, including pressure p, potential

temperature θ, velocity components u, v, w as well as the original and modified Hadley cell.

Compared with the simple case shown in Fig. 1.6, we can confirm the advection effects of

the Hadley cell through the meridionally tilted spatial patterns of the pressure p and the

potential temperature θ. The spatial patterns of the velocity components u, v, w share many

similar features with the case we discuss above.

1.5 Concluding Discussion

In the present chapter, we have derived a multi-scale model by starting from the hydrostatic,

anelastic Euler equations on an equatorial β-plane and following the derivation of systematic

multi-scale models for tropical convection (Majda, 2007). Inspired by the observation of the
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Figure 1.7: The upper figure shows the large-scale flows corresponding to the heating in
section 1.3.1. The lower figure shows the case corresponding to the heating in section 1.3.2.
(a) pressure p; (b) potential temperature θ; (c) zonal velocity u; (d) meridional velocity v;
(e) vertical velocity w; (f) the meridional and vertical flow field (v, w); (g) color means the
meridional velocity of the original Hadley cell, vectors show the flow field in (f); (h) color
means the vertical velocity of the original Hadley cell, vectors show the flow field in (f); (i)
the modified Hadley cell, (V + εv,W + εw). The units of p, θ, u, v, w are 250 m2/s2,1.5 K,5
m/s,0.5 m/s,5 m/s,0.16 cm/s and the units of V,W in the Hadley cell are 5m/s,1.6 cm/s.
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diurnal variability of tropical precipitation (Kikuchi and Wang, 2008), we try to assess the

intraseasonal impact of planetary-scale inertial oscillations in the diurnal cycle. The appeal

of this analytic multi-scale model is that it provides assessment of eddy flux divergences of

momentum and temperature and their intraseasonal impact on the planetary-scale circula-

tion in a transparent fashion. Thanks to the multi-scale asymptotics and several essential

assumptions, this multi-scale model is capable of reproducing the Hadley cell and its advec-

tive effects on the planetary/intraseasonal scale circulation anomalies, allowing us to study

large-scale flows in a more general framework. To assess the intraseasonal impact of the

diurnal cycle of tropical precipitation on the planetary-scale flow such as the Hadley cell,

four systems involving physical variables on different spatiotemporal scales have been sepa-

rated from the primitive equations by using multi-scale asymptotics. In order to assess the

upscale feedback from the daily time scale to the intraseasonal time scale, one system involv-

ing physical variables on the planetary scale and daily time scale has been utilized as the

model for the diurnal cycle. Since the eddy flux divergences of momentum and temperature

involve the planetary-scale flows on the daily time scale from the model for the diurnal cycle,

the planetary/intraseasonal scale circulation forced by those eddy flux divergences can be

interpreted as the intraseasonal impact of the diurnal cycle.

The model for the diurnal cycle is a linear system with all physical variables on the

planetary scale and daily time scale, since the original equations are assumed to be weakly

advected and all the resulting equations in the model for the diurnal cycle come from the

leading-order asymptotic expansion of the primitive equations. To mimic the latent heat

release associated with the diurnal cycle of tropical convection, the model utilizes three cloud

types (congestus, deep convective, and stratiform) of organized tropical convection in the free

troposphere (Frenkel et al., 2011a,c, 2013). For the eddy flux divergences of momentum and

temperature, there are explicit formulas calculated by using spectral expansion techniques

(Majda, 2003). The results show that the eddy flux divergence of temperature during boreal

summer is much stronger than that during equinox, which suggests that the significant
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intraseasonal impact of the diurnal cycle is traced to the meridional asymmetry of the diurnal

cycle heating profile in the first two baroclinic modes. During boreal summer, the eddy flux

divergence of temperature dominates in the northern hemisphere, providing a significant

heating in the middle troposphere of the northern hemisphere with large-scale ascent and

cooling surrounding this heating center with large-scale subsidence.

Having recognized the spatial patterns of eddy flux divergences of momentum and tem-

perature during equinox and boreal summer, we can calculate the resulting planetary-scale

circulation response on the intraseasonal time scale, which comes from the second-order

asymptotic expansion of the primitive equations and indicates the upscale feedback of the

diurnal cycle. In an ideal zonally symmetric case, the resulting steady state circulation

on the planetary/intraseasonal scales during boreal summer is characterized by ascent in

the northern hemisphere, southward motion in the upper troposphere, descent around the

equator and northward motion in the lower troposphere. Also, the intraseasonal impact of

the diurnal cycle on the planetary scale includes negative potential temperature anomalies in

the lower troposphere, which suggests convective triggering in the tropics. The leading-order

planetary/intraseasonal scale circulation is utilized as the model for the Hadley cell. Since

the planetary/intraseasonal scale circulation system is advected by the Hadley cell, we are

able to obtain a fully coupled version of the intraseasonal impact of the diurnal cycle on the

Hadley cell. By studying such a fully coupled model, we conclude that the intraseasonal

impact of the diurnal cycle can strengthen the upper branch of the winter cell of the Hadley

circulation but weaken the lower branch of the winter cell of the Hadley circulation. Mean-

while, there exist strong northward winds in the middle troposphere around the equator,

providing extensive features of the intraseasonal impact of the diurnal cycle on the Hadley

cell.

The appeal of the multi-scale model developed in this chapter is that there exist explicit

formulas for the eddy flux divergences of momentum and temperature for the upscale feed-

back across multiple spatiotemporal scales, which provides assessment of the intraseasonal
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impact of the diurnal cycle in a transparent fashion. In fact, the IPESD model (Majda and

Biello, 2004; Majda, 2007; Biello and Majda, 2005, 2006) considers the upscale feedback

from the synoptic scale to the planetary scale and successfully generates a planetary-scale

circulation resembling the tropical intraseasonal oscillation. In contrast, here we consider

the upscale feedback from the daily time scale to the intraseasonal time scale and explore

the intraseasonal impact of the diurnal cycle. When it is coupled with the model for the

Hadley cell, the multi-scale model developed here provides a clear framework for the mod-

ulation and rectification of the Hadley circulation. The framework developed here for the

intraseasonal impact of the diurnal cycle may provide insight into the explanation of some

tropical phenomena. One promising application of the intraseasonal impact of the diurnal

cycle is to better represent the intraseasonal variability in the tropics such as Madden-Julian

oscillation (MJO). It may be interesting to include the nonlinear effects of moisture across

multiple spatiotemporal scales, as for example in (Biello and Majda, 2010), allowing this

multi-scale model to generate more realistic features of tropical phenomena.

This study has some implications for comprehensive numerical models. First, according

to the results in sec. 4.2 and 4.3, it can be concluded that the diurnal cycle of tropical

convection during boreal summer can induce significant intraseasonal impact on the plane-

tary scale in the tropics. Thus one of the implications of this simple asymptotic model to

the comprehensive models is that it emphasizes the significance of the representation of the

diurnal variability of tropical precipitation. Specifically, the heating profile utilizing three

cloud types (congestus, deep convective and stratiform) on the first two barolinic modes is

a good candidate (Khouider and Majda, 2006a,b,c). Secondly, the eddy flux divergences of

the momentum and temperature not only allow us to analytically assess the upscale effects

from the daily time scale, but also provide the comprehensive numerical models with better

intuition for the parameterization associated with the diurnal cycle and its intraseasonal im-

pact. Thirdly, the planetary-scale response to the intraseasonal impact of the diurnal cycle

in this model, including the lower level potential temperature anomalies, the multiple zonal
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jets and the overturning circulation cells, may provide theoretical predictions and physical

mechanisms to improve the simulation of the flow field over the Maritime Continent in the

comprehensive numerical models.

1.6 Appendix

1.6.1 Details for the derivation of the multi-scale model

We start from the hydrostatic, anelastic Euler equations on an equatorial β-plane, Eqs.

(1.2a-1.2e)

ut + uux + vuy + wuz − yv = −px − εdu+ Su (1.34a)

vt + uvx + vvy + wvz + yu = −py − εdv + Sv (1.34b)

θt + uθx + vθy + wθz +N2w = −εdθθ + Sθ (1.34c)

pz = θ (1.34d)

(ρu)x + (ρv)y + (ρw)z = 0 (1.34e)

where ρ = ρ (z)and N2 = N2 (z) are in dimensionless units and depend only on height.

By assuming multi-scale solutions as the expression (Eq. 1.3) and using the chain rule,

the zonal and time derivatives of an arbitrary function f ε are given by

∂f ε

∂x
+ ε

∂f ε

∂X
,
∂f ε

∂t
+ ε

∂f ε

∂T
(1.35)

Meanwhile, we use the ansatz(1.7)

g = ε
[
g
′
(x,X, t, T, y, z) + ḡ (X, t, T, y, z)

]
+ ε2g2, g ∈ {u, v, w, θ, p, Su, Sv, Sθ} (1.36)

We plug the ansatz into Eqs. (1.34a-1.34e), and collect all terms at the leading order.
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For O (ε):

∂

∂t
(u+ u′)− y (v + v′) = − ∂

∂x
p′ + S ′u + S̄u, (1.37a)

∂

∂t
(v + v′) + y (u+ u′) , = − ∂

∂y
(p̄+ p′) + S ′v + S̄v

∂

∂t

(
θ + θ′

)
+N2 (w + w′) ,

= S ′θ + S̄θ
∂

∂z
(p̄+ p′) = θ̄ + θ′

∂

∂x
u′ +

∂

∂y
(v + v′) +

1

ρ

∂

∂z
(ρ (w + w′)) ,

= 0.

(1.37b)

By doing zonal averaging on Eqs. (1.37a-1.37b), we can get the planetary-scale system

∂

∂t
u− yv = S̄u, (1.38a)

∂

∂t
v + yu = − ∂

∂y
p̄+ S̄v, (1.38b)

∂

∂t
θ +N2w = S̄θ, (1.38c)

∂

∂z
p̄ = θ̄, (1.38d)

∂

∂y
v +

1

ρ

∂

∂z
(ρw) = 0. (1.38e)

By subtracting the planetary-scale system (1.38a-1.38e) from Eqs. (1.37a-1.37b), we derive

the synoptic-scale system

∂

∂t
u′ − yv′ = − ∂

∂x
p′ + S ′u, (1.39a)

∂

∂t
v′ + yu′ = − ∂

∂y
p′ + S ′v, (1.39b)

∂

∂t
θ′ +N2w′ = S ′θ, (1.39c)

∂

∂z
p′ = θ′, (1.39d)

∂

∂x
u′ +

∂

∂y
v′ +

1

ρ

∂

∂z
(ρw′) = 0. (1.39e)
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Since the daily time scale is the fast time scale compared with the intraseasonal time scale,

we do time averaging on Eqs. (1.38a-1.38e) and all daily time scale derivatives vanish. In

the end, we get the leading-order planetary scale system on the intraseasonal time scale

−y 〈v〉 =
〈
S̄u
〉
, (1.40a)

y 〈ū〉 = − ∂

∂y
〈p̄〉+

〈
S̄v
〉
, (1.40b)

N2 〈w〉 =
〈
S̄θ
〉
, (1.40c)

∂

∂z
〈p̄〉 =

〈
θ̄
〉
, (1.40d)

∂

∂y
〈v〉+

1

ρ

∂

∂z
(ρ 〈w〉) = 0. (1.40e)

By combining Eqs. (1.40a,1.40c,1.40e), we can get a constraint as follows

∂

∂y

(〈
S̄u
〉

y

)
=

1

ρ

∂

∂z

(
ρ

〈
S̄θ
〉

N2

)
. (1.41)

For O (ε2) , we just look at the zonal momentum equation, the thermal equation and the

mass conservation equation:

∂

∂T
(u+ u′) +

∂

∂t
u2 + (u+ u′)

∂

∂x
(u+ u′) + (v + v′)

∂

∂y
(u+ u′) + (w + w′)

∂

∂z
(u+ u′)

− yv2 = − ∂

∂x
p2 −

∂

∂X
(p̄+ p′)− d (u+ u′) + Su,2

,

(1.42)

∂

∂T

(
θ + θ′

)
+
∂

∂t
θ2 + (u+ u′)

∂

∂x

(
θ + θ′

)
+ (v + v′)

∂

∂y

(
θ + θ′

)
+ (w + w′)

∂

∂z

(
θ + θ′

)
+N2w2 = −dθ

(
θ + θ′

)
+ Sθ,2

,

(1.43)

∂

∂x
u2 +

∂

∂X
(u+ u′) +

∂

∂y
v2 +

1

ρ

∂

∂z
(ρw2) = 0. (1.44)

In order to guarantee the validation of multi-scale asymptotics, secular growth on spa-

50



tiotemporal scales can be avoid and we have ∂
∂x
f = 0,

〈
∂
∂t
f
〉

= 0.

After doing zonal averaging on the equations above, we can get

∂

∂T
u+

∂

∂t
ū2 + v′

∂

∂y
u′ + v̄

∂

∂y
ū+ w′

∂

∂z
u′ + w̄

∂

∂z
ū− yv̄2 = − ∂

∂X
p̄− du+ Su,2, (1.45)

∂

∂T
θ +

∂

∂t
θ̄2 + u′

∂

∂x
θ′ + v′

∂

∂y
θ′ + v̄

∂

∂y
θ̄ + w′

∂

∂z
θ′ + w̄

∂

∂z
θ̄ +N2w̄2 = −dθθ + Sθ,2, (1.46)

∂

∂X
u+

∂

∂y
v̄2 +

1

ρ

∂

∂z
(ρw̄2) = 0. (1.47)

By combining the incompressibility condition (1.39e) for O (ε), we have (Majda, 2007)

u′
∂

∂x
(ρu′) + u′

∂

∂y
(ρv′) + u′

∂

∂z
(ρw′) = 0, (1.48)

θ′
∂

∂x
(ρu′) + θ′

∂

∂y
(ρv′) + θ′

∂

∂z
(ρw′) = 0. (1.49)

Similarly, if we use the incompressibility condition(1.40e) for O (ε), we have (Majda, 2007)

u
∂

∂y
(ρv) + u

∂

∂z
(ρw) = 0, (1.50)

θ
∂

∂y
(ρv) + θ

∂

∂z
(ρw) = 0. (1.51)

Now we can simplify Eqs. (1.45-1.47) by using Eqs. (1.48, 1.49, 1.50, 1.51).

∂

∂T
u+

∂

∂t
ū2 − yv̄2 = − ∂

∂X
p̄− du− ∂

∂y
(v′u′)− 1

ρ

∂

∂z
(ρw′u′)− ∂

∂y
(v̄ū)− 1

ρ

∂

∂z
(ρw̄ū) + Su,2,

(1.52)

∂

∂T
θ +

∂

∂t
θ̄2 +N2w̄2 = −dθθ −

∂

∂y
(v′θ′)− 1

ρ

∂

∂z
(ρw′θ′)− ∂

∂y

(
v̄θ̄
)
− 1

ρ

∂

∂z

(
ρw̄θ̄

)
+ Sθ,2,

(1.53)

∂

∂X
u+

∂

∂y
v̄2 +

1

ρ

∂

∂z
(ρw̄2) = 0. (1.54)
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Similarly, we do time average on the daily time scale t on Eqs. (1.40b, 1.40d, 1.52-1.54).

All daily time scale derivatives vanish
〈
∂
∂t
ū2

〉
= 0;

〈
∂
∂t
θ̄2

〉
= 0. Also, if we separate each

planetary-scale variable into an intraseasonal time scale component and a daily time scale

component,

ū = 〈ū〉+ ˜̄u; v̄ = 〈v̄〉+ ˜̄v; w̄ = 〈w̄〉+ ˜̄w; θ̄ =
〈
θ̄
〉

+ ˜̄θ (1.55)

After time averaging, the eddy flux divergences of momentum and temperature on the

planetary scale can be divided into two pieces, one piece can be interpreted as advection

effects from the leading-order 〈v̄〉 , 〈w̄〉, and the other piece can be understood as eddy flux

divergences from the daily time scale to the intraseasonal time scale

− ∂

∂y
〈v̄ū〉 − 1

ρ

∂

∂z
〈ρw̄ū〉 = − ∂

∂y
〈(〈v̄〉+ ˜̄v) (〈ū〉+ ˜̄u)〉 − 1

ρ

∂

∂z
〈ρ (〈w̄〉+ ˜̄w) (〈ū〉+ ˜̄u)〉 ,

= − ∂

∂y
(〈v̄〉 〈ū〉)− 1

ρ

∂

∂z
(ρ 〈w̄〉 〈ū〉)− ∂

∂y
〈˜̄v ˜̄u〉 − 1

ρ

∂

∂z
〈ρ ˜̄w ˜̄u〉 .

(1.56)

If we use Eq. (1.40e) and multiply it by 〈ū〉 , we can get

〈ū〉 ∂
∂y
〈v〉+

1

ρ
〈ū〉 ∂

∂z
(ρ 〈w〉) = 0. (1.57)

Then we can find that the first two terms in the right hand of Eq. (1.56) can be rewritten

as

− ∂

∂y
(〈v̄〉 〈ū〉)− 1

ρ

∂

∂z
(ρ 〈w̄〉 〈ū〉) = −〈ū〉 ∂

∂y
〈v〉 − 1

ρ
〈ū〉 ∂

∂z
(ρ 〈w〉)− 〈v〉 ∂

∂y
〈ū〉 − 〈w̄〉 ∂

∂z
〈ū〉 ,

= −〈v〉 ∂
∂y
〈ū〉 − 〈w̄〉 ∂

∂z
〈ū〉 .

(1.58)
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Similarly, we can rewrite eddy flux divergence of temperature

− ∂

∂y

(
v̄θ̄
)
− 1

ρ

∂

∂z

(
ρw̄θ̄

)
= −〈v〉 ∂

∂y

〈
θ̄
〉
− 〈w̄〉 ∂

∂z

〈
θ̄
〉
− ∂

∂y

〈
˜̄v ˜̄θ
〉
− 1

ρ

∂

∂z

〈
ρ ˜̄w ˜̄θ

〉
. (1.59)

Finally, we conclude with the planetary/intraseasonal scale system after time averaging on

Eqs. (1.52-1.54) plus Eqs. (1.40b, 1.40d)

D

DT
〈ū〉 − y 〈v̄2〉 = −〈p̄〉X − d 〈ū〉 −

∂

∂y

〈
v′u′

〉
− 1

ρ

∂

∂z

(
ρ
〈
w′u′

〉)
− ∂

∂y
〈˜̄v ˜̄u〉 − 1

ρ

∂

∂z
(ρ 〈 ˜̄w ˜̄u〉) +

〈
S̄u,2

〉
,

(1.60a)

y 〈ū〉 = −〈p̄〉y +
〈
S̄v
〉
, (1.60b)

D

DT

〈
θ̄
〉

+N2 〈w̄2〉 = −dθ
〈
θ̄
〉
− ∂

∂y

〈
v′θ′
〉
− 1

ρ

∂

∂z

(
ρ
〈
w′θ′

〉)
− ∂

∂y

〈
˜̄v ˜̄θ
〉
− 1

ρ

∂

∂z

(
ρ
〈

˜̄w ˜̄θ
〉)

+
〈
S̄θ,2
〉
,

(1.60c)

〈p̄〉z =
〈
θ̄
〉
, (1.60d)

〈ū〉X + 〈v̄2〉y +
1

ρ
(ρ 〈w̄2〉)z = 0. (1.60e)

where D
DT

= ∂
∂T

+〈v̄〉 ∂
∂y

+〈w̄〉 ∂
∂z

, thus this system is advected by the leading-order meridional

and vertical velocities on the planetary/intraseasonal scales. Now, the derivation of the

multi-scale model is complete.
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1.6.2 Explicit formulas for the eddy flux divergences of momen-

tum and temperature

The following formulas are the explicit solutions for Eqs. (1.16a-1.16e) corresponding to the

simple heating profile (Eq. 1.19) in the first two baroclinic modes



p

u

v

θ

w


=



[
p̃0|1 (y) + γp̃1|1 (y)

]
cos (kX + ωt) cos (z)[

ũ0|1 (y) + γũ1|1 (y)
]

cos (kX + ωt) cos (z)[
ṽ0|1 (y) + γṽ1|1 (y)

]
sin (kX + ωt) cos (z)[

θ̃0|1 (y) + γθ̃1|1 (y)
]

cos (kX + ωt) sin (z)[
w̃0|1 (y) + γw̃1|1 (y)

]
sin (kX + ωt) sin (z)



+ α



[
p̃0|2 (y) + γp̃1|2 (y)

]
cos (kX + ωt+ β) cos (2z)[

ũ0|2 (y) + γũ1|2 (y)
]

cos (kX + ωt+ β) cos (2z)[
ṽ0|2 (y) + γṽ1|2 (y)

]
sin (kX + ωt+ β) cos (2z)[

θ̃0|2 (y) + γθ̃1|2 (y)
]

cos (kX + ωt+ β) sin (2z)[
w̃0|2 (y) + γw̃1|2 (y)

]
sin (kX + ωt+ β) sin (2z)


.

(1.61)

Since it can be proved that the homogeneous solutions of Eqs. (1.16a-1.16e) do not con-

tribute to eddy flux divergences of momentum and temperature F u, F θ, here we only show

the particular solutions corresponding to the prescribed heating (Eq. 1.19). For a simple

heating profile with the leading two parabolic cylinder functions as its meridional profiles,

p̃0|q, ũ0|q, ṽ0|q, θ̃0|q, w̃0|q ,p̃1|q, ũ1|q, ṽ1|q, θ̃1|q, w̃1|q in the expression (1.61) can be rewritten as fol-
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lows



p̃0|q

ũ0|q

ṽ0|q

θ̃0|q

w̃0|q


=



(
−
√

2
6ω
−

√
2ω

6( 3N
q
−ω2)

)
φ2|q +

(
− 5

6ω
+ ω

6( 3N
q
−ω2)

)
φ0|q(

−
√

2q
6ωN
−

√
2qω

6N( 3N
q
−ω2)

)
φ2|q +

(
− q

6ωN
− qω

6N( 3N
q
−ω2)

)
φ0|q√

q
2N

1
3N
q
−ω2φ1|q(√

2q
6ω

+
√

2qω

6( 3N
q
−ω2)

)
φ2|q +

(
5q
6ω
− qω

6( 3N
q
−ω2)

)
φ0|q(

q

3
√

2N2 + qω2

3
√

2N2( 3N
q
−ω2)

)
φ2|q +

(
− q

6N2 − qω2

6N2( 3N
q
−ω2)

)
φ0|q


, (1.62)



p̃1|q

ũ1|q

ṽ1|q

θ̃1|q

w̃1|q


=



(
−
√

6
10ω
−

√
6ω

10( 5N
q
−ω2)

)
φ3|q +

(
− 3

10ω
+ ω

5( 5N
q
−ω2)

− ω

2(ω2−N
q )

)
φ1|q(

−
√

6q
10ωN

−
√

6qω

10N( 5N
q
−ω2)

)
φ3|q +

(
3q

10ωN
− qω

5N( 5N
q
−ω2)

− qω

2N(ω2−N
q )

)
φ1|q√

q
N

1
5N
q
−ω2φ2|q +

√
q

2N
1

ω2−N
q

φ0|q(√
6q

10ω
+

√
6qω

10( 5N
q
−ω2)

)
φ3|q +

(
3q

10ω
− qω

5( 5N
q
−ω2)

+ qω

2(ω2−N
q )

)
φ1|q( √

6q
10N2 +

√
6qω2

10N2( 5N
q
−ω2)

)
φ3|q +

(
− 7q

10N2 − qω2

5N2( 5N
q
−ω2)

+ qω2

2N2(ω2−N
q )

)
φ1|q


.

(1.63)

For a more general heating profile ˜̄Sθ with an arbitrary meridional profile, we need to de-

compose it into different parabolic cylinder functions φm|q,m = 1, 2; q = 1, 2 and calculate

the corresponding solutions.

Since the eddy flux divergences of momentum and temperature F u, F θ are product of

two physical variables after time averaging on the daily time scale, we need to apply the

following facts
〈
sin2 (ωt)

〉
= 〈cos2 (ωt)〉 = 1

2
. Finally, we can get analytic expressions for

F u, F θ as follows
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F u = − ∂

∂y
〈˜̄v ˜̄u〉 − 1

ρ

∂

∂z
(ρ 〈 ˜̄w ˜̄u〉)

= α sin (β)

{
− ∂

∂y

[(
ũ0|1 + γũ1|1

) (
ṽ0|2 + γṽ1|2

)
−
(
ũ0|2 + γũ1|2

) (
ṽ0|1 + γṽ1|1

)
4

]

−1

4

(
ũ0|1 + γũ1|1

) (
w̃0|2 + γw̃1|2

)
− 1

4

(
ũ0|2 + γũ1|2

) (
w̃0|1 + γw̃1|1

)}
cos (z)

+ α sin (β)

{
− ∂

∂y

[(
ũ0|1 + γũ1|1

) (
ṽ0|2 + γṽ1|2

)
−
(
ũ0|2 + γũ1|2

) (
ṽ0|1 + γṽ1|1

)
4

]

−3

4

(
ũ0|1 + γũ1|1

) (
w̃0|2 + γw̃1|2

)
+

3

4

(
ũ0|2 + γũ1|2

) (
w̃0|1 + γw̃1|1

)}
cos (3z)

(1.64)

F θ = − ∂

∂y

〈
˜̄v ˜̄θ
〉
− 1

ρ

∂

∂z

(
ρ
〈

˜̄w ˜̄θ
〉)

= α sin (β)

 ∂

∂y

(ṽ0|1 + γṽ1|1
) (
θ̃0|2 + γθ̃1|2

)
+
(
ṽ0|2 + γṽ1|2

) (
θ̃0|1 + γθ̃1|1

)
4


−1

4

(
w̃0|1 + γw̃1|1

) (
θ̃0|2 + γθ̃1|2

)
+

1

4

(
w̃0|2 + γw̃1|2

) (
θ̃0|1 + γθ̃1|1

)}
sin(z)

+ α sin (β)

 ∂

∂y

(ṽ0|1 + γṽ1|1
) (
θ̃0|2 + γθ̃1|2

)
−
(
ṽ0|2 + γṽ1|2

) (
θ̃0|1 + γθ̃1|1

)
4


+

3

4

(
w̃0|1 + γw̃1|1

) (
θ̃0|2 + γθ̃1|2

)
− 3

4

(
w̃0|2 + γw̃1|2

) (
θ̃0|1 + γθ̃1|1

)}
sin(3z)

(1.65)

1.6.3 The numerical method to solve the fully coupled plane-

tary/intraseasonal scale system

In section (1.4.3), we need to solve the planetary/intraseasonal scale system advected by the

Hadley cell. To be brief, we rename all physical variables u = 〈ū〉 , p = 〈p̄〉 , θ =
〈
θ̄
〉
, v =

〈v̄2〉 , w = 〈w̄2〉 and the Hadley cell flow field V = 〈v̄〉 ,W = 〈w̄〉. The equations are as
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follows

∂

∂T
u+ V

∂

∂y
u+W

∂

∂z
u− yv = −du+ F u (1.66a)

yu = −py (1.66b)

∂

∂T
θ + V

∂

∂y
θ +W

∂

∂z
θ +N2w = −dθθ + F θ (1.66c)

pz = θ (1.66d)

vy +
1

ρ
(ρw)z = 0 (1.66e)

This system is advected by the meridional and vertical velocity 〈v̄〉 , 〈w̄〉 in the model for the

Hadley cell (1.23a-1.23c). We assume rigid lid boundary conditions at top and bottom of

the troposphere,

w (X,T, y, z) |z=0,π= 0 (1.67)

where in dimensionless unit z = 0 represents the surface of the earth and z = π represents

the top of the troposphere.

Since we want to get the solutions in equilibrium, we can neglect the time derivatives

and only solve time-independent equations. We utilize a very crucial property that both the

meridional velocity and vertical velocity 〈v̄〉 , 〈w̄〉 of the Hadley cell are in the first baroclinic

mode, as prescribed in Eqs.1.25-1.26 and Eqs.1.27-1.28. Therefore, we can still use the

ansatz that the solution can be represented by the sum of different baroclinic modes and the

barotropic mode. The basic idea follows the numerical method used in (Biello and Majda,

2006). However, due to the advection terms in this system, different vertical modes are

coupled to each other. After doing vertical decomposition to separate all physical variables

into different vertical modes, we use the Galerkin method to guarantee that all the equations

are satisfied for a finite set of parabolic cylinder functions.

First, we do vertical decomposition and use the following ansatz
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u =
N∑
q=0

Uq cos (qz) ; V = H (y) cos (z)

p =
N∑
q=0

Pq cos (qz) ; W = K (y) [− sin (z)]

v =
N∑
q=0

Vq cos (qz) ; d = 0.7; dθ = 0.23

θ =
N∑
q=1

Θq [−q sin (qz)] ; F u = Su1 (y) cos (z) + Su3 (y) cos (3z)

w =
N∑
q=1

Wq [−q sin (qz)] ; F θ = Sθ1 (y) [− sin (z)] + Sθ3 (y) [−3 sin (3z)]

(1.68)

here H (y) , K (y) , Su1 (y) , Su3 (y) , Sθ1 (y) , Sθ3 (y) are all known functions of y. Then we can

derive equations for the coefficients of all vertical modes. Here we just list equations for the

qth baroclinic mode, we omit the equations for the barotropic mode, the first baroclinic mode

and the last baroclinic mode for simplicity. If q ≥ 2 and q ≤ N , the qth baroclinic mode

1

2
H
∂

∂y
Uq−1 +

1

2
H
∂

∂y
Uq+1 −

q − 1

2
KUq−1 +

q + 1

2
KUq+1 − yVq = −dUq + Suq (1.69)

yUq = − ∂

∂y
Pq (1.70)

q − 1

2
H
∂

∂y
Θq−1 +

q + 1

2
H
∂

∂y
Θq+1 −

(q − 1)2

2
KΘq−1 +

(q + 1)2

2
KΘq+1 + qWq =

−dθqΘq + qSθq

(1.71)

Pq = Θq (1.72)

∂

∂y
Vq − q2Wq = 0 (1.73)

Now we do the meridional decomposition. Remembering that Eqs. (1.69-1.73) can be

reduced to three equations for each baroclinic mode, we only need to do meridional decom-

position for Uq, Pq, Vq; q ≥ 1 as follows
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Uq =
M−1∑
m=0

Um|qφm|q (y) ; Suq =
M−1∑
m=0

Sum|qφm|q (y)

Pq =
M−1∑
m=0

Pm|qφm|q (y) ; Sθq =
M−1∑
m=0

Sθm|qφm|q (y)

Vq =
M−1∑
m=0

Vm|qφm|q (y) ;

Θq = Pq;

Wq = 1
q2

∂
∂y
Vq;

(1.74)

We can notice that different baroclinic modes are interacted with each other in Eqs.

(1.69-1.73). In order to use the spectrum expansion techniques (Biello and Majda, 2006),

we need to use the parabolic cylinder functions corresponding to the same baroclinic mode.

Therefore, to a good approximation, we introduce the notation 〈·, ·〉 to represent the integral

from −∞ to ∞ and do Galerkin projection

〈f (y) , g (y)〉 =

∫ ∞
−∞

f (y) g (y) dy. (1.75)

What we do next is to solve the equations and guarantee that the coefficients before

parabolic cylinder functions are zero in each equation. Ideally, with more meridional modes,

the solutions are more accurate. Here we truncate the series of the parabolic cylinder func-

tions and choose the number of the basic functions to be large (M = 30). Similarly, we just

list equations for the qth baroclinic mode, we omit the equations for the barotropic mode,

the first baroclinic mode and the last baroclinic mode for simplicity.

If q ≥ 2 and q ≤ N , the qth baroclinic mode
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M−1∑
s=0

Ps|q−1

〈
q − 1

2
H
∂

∂y
φs|q−1, φm|q

〉
+

M−1∑
s=0

Ps|q+1

〈
q + 1

2
H
∂

∂y
φs|q+1, φm|q

〉
+

M−1∑
s=0

Ps|q−1

〈
−(q − 1)2

2
Kφs|q−1, φm|q

〉
+

M−1∑
s=0

Ps|q+1

〈
(q + 1)2

2
Kφs|q+1, φm|q

〉
+

M−1∑
s=0

Us|q−1

〈
1

2
H
∂

∂y
φs|q−1, φm|q

〉
+

M−1∑
s=0

Us|q+1

〈
1

2
H
∂

∂y
φs|q+1, φm|q

〉
+

M−1∑
s=0

Us|q−1

〈
−q − 1

2
Kφs|q−1, φm|q

〉
+

M−1∑
s=0

Us|q+1

〈
q + 1

2
Kφs|q+1, φm|q

〉
+

1

q
Vm−1|q

(
−
√

2qm
)

+ dθqPm|q + dUm|q =

qSθm|q + Sum|q,

(1.76)

M−1∑
s=0

Ps|q−1

〈
q − 1

2
H
∂

∂y
φs|q−1, φm|q

〉
+

M−1∑
s=0

Ps|q+1

〈
q + 1

2
H
∂

∂y
φs|q+1, φm|q

〉
+

M−1∑
s=0

Ps|q−1

〈
−(q − 1)2

2
Kφs|q−1, φm|q

〉
+

M−1∑
s=0

Ps|q+1

〈
(q + 1)2

2
Kφs|q+1, φm|q

〉
+

M−1∑
s=0

Us|q−1

〈
−1

2
H
∂

∂y
φs|q−1, φm|q

〉
+

M−1∑
s=0

Us|q+1

〈
−1

2
H
∂

∂y
φs|q+1, φm|q

〉
+

M−1∑
s=0

Us|q−1

〈
q − 1

2
Kφs|q−1, φm|q

〉
+

M−1∑
s=0

Us|q+1

〈
−q + 1

2
Kφs|q+1, φm|q

〉
+

1

q
Vm+1|q

(√
2q (m+ 1)

)
+ dθqPm|q − dUm|q =

qSθm|q − Sum|q,

(1.77)

(
qPm+1|q + Um+1|q

)√
2q (m+ 1)−

(
qPm−1|q − Um−1|q

)√
2qm = 0.

Finally, we can get a linear equation with a matrix A involving all the coefficients

Um|q, Pm|q, Vm|q for the physical variables, and a vector B involving all the coefficients
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Sθm|q, S
u
m|q for the forcings. Then we just solve this linear equation

AX = B (1.78)

By using the ansatz for meridional and vertical decomposition (1.68,1.74), we can recover

all the physical variables to be functions of y and z by using the vector X for all coefficients.
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Chapter 2

A Multi-Scale Model for the

Intraseasonal Impact of the Diurnal

Cycle over the Maritime Continent on

the Madden-Julian Oscillation

2.1 Introduction

The Maritime Continent is a region in the tropical warm pool, consisting of islands, penin-

sulas and shallow seas. Due to strong insolation near the equator and low heat capacity

of the land surface, tropical convection prevails over the Maritime Continent and releases a

huge amount of latent heat to the atmosphere. Thus the Maritime Continent is considered

as an important energy source region for the global circulation (Ramage, 1968; Neale and

Slingo, 2003). Tropical convection over the Maritime Continent is organized on multiple

time scales, ranging from cumulus clouds on the daily time scale to intraseasonal oscilla-

tions. In particular, on the daily time scale, the diurnal cycle of tropical convection over the

Maritime Continent is very significant compared with that over the Indian Ocean and the
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western Pacific Ocean (Hendon and Woodberry, 1993; Kikuchi and Wang, 2008). On the

intraseasonal time scale, the Madden-Julian Oscillation (MJO), the dominant component

of the intraseasonal variability in the tropics, typically propagates eastward slowly across

the Maritime Continent and can stall or terminate there releasing large amounts of rainfall

(Zhang, 2005).

The contemporary general circulation models (GCMs) still do a poor job of resolving

tropical convection over the Maritime Continent. One of the significant errors is that the

GCMs cannot correctly simulate the precipitation over the Maritime Continent. For in-

stance, obvious discrepancies of the diurnal amplitude in precipitation over the islands of

the Maritime Continent during boreal winter have been noticed in the present-day GCM

(Yang and Slingo, 2001; Stratton and Stirling, 2012). Another one of the significant errors

is that the GCMs typically poorly represent the eastward propagating MJO over the Mar-

itime Continent (Sperber et al., 1997; Inness and Slingo, 2003). One possible reason is the

inadequate treatment of the diurnal cycle and its impact on the intraseasonal variability

of atmospheric flow. In fact, current numerical models have difficulty in reproducing the

diurnal variability of tropical precipitation (Randall and Dazlich, 1991; Dai and Trenberth,

2004; Tian et al., 2004), although superparameterization has enhanced fidelity (Khairoutdi-

nov et al., 2005; Benedict and Randall, 2011). In order to improve comprehensive numerical

simulations with more realistic features, it is important to have a better understanding of the

intraseasonal impact of the diurnal cycle and whether such upscale impact from the diurnal

cycle can influence the MJO.

In fact, many observational studies focus on the scale interaction between the diurnal

cycle of precipitation and the MJO over the Maritime Continent (Chen and Houze, 1997;

Slingo et al., 2003; Rauniyar and Walsh, 2011; Peatman et al., 2014). Among the previous

studies, the modulation of the diurnal cycle of tropical convection by the MJO has been

investigated by evaluating the difference in magnitude and phase of the diurnal cycle between

the convectively active and suppressed phases of the MJO (Sui and Lau, 1992; Sui et al., 1997;
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Tian et al., 2006). However, the upscale impact of the diurnal cycle of tropical convection

on the MJO is not well understood. In the theoretical direction, the resonant nonlinear

interactions between equatorial waves in the barotropic mode and the first baroclinic mode

have been studied in the presence of a diurnally varying heat source, but the effect of the

second baroclinic mode is not considered there (Raupp and Silva Dias, 2009, 2010). In

contrast to that, the multicloud models based on the first and second baroclinic modes

for the three type clouds (congestus, deep and stratiform) have been built (Khouider and

Majda, 2006c,a,b, 2007, 2008b,a) and reproduce several realistic features of the diurnal cycle

of tropical convection (Frenkel et al., 2011b,d, 2013).

The goal of this chapter is to provide a framework for modelling the passage of the MJO

over the Maritime Continent where the diurnal cycle of tropical convection is significant and

assess how the intraseasonal impact of the diurnal cycle of tropical convection will modify the

kinematic and thermodynamic characteristics of the MJO. Indeed, a self-consistent multi-

scale model with two time scales (the daily/intraseasonal time scales) has been built to assess

the intraseasonal impact of the diurnal cycle of tropical convection (Yang and Majda, 2014).

This multi-scale model provides two sets of equations governing planetary-scale tropical flow

on the daily and intraseasonal time scales separately. It turns out that the planetary-scale

circulation response on the intraseasonal time scale is forced by eddy flux divergences of

zonal momentum and temperature from the daily time scale. These eddy flux divergence

terms provide us with assessment of upscale transfer of kinetic and thermal energy across

multiple time scales in a transparent fashion.

According to this multi-scale model (Yang and Majda, 2014), the planetary-scale tropical

flow on the daily time scale is governed by a set of linear equations, which can be thermally

forced by a heat source. Here we prescribe a diurnally varying heat source within a standing

convective envelope to mimic the latent heat release over the Maritime Continent. In detail,

we utilize the vertical structure in the first and second baroclinic modes for the heat source

to characterize the diurnal cycle (Frenkel et al., 2011b,d, 2013) and the organized tropical
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convection with three type clouds (congestus, deep and stratiform) life cycle, which was first

introduced in the multicloud models (Khouider and Majda, 2006c,a,b, 2007, 2008b,a).

The planetary-scale tropical flow on the intraseasonal time scale is governed by another

set of Gill-type equations in long wave approximation (Matsuno, 1966; Gill, 1980), which

can be forced by the spatially upscale transfer from the synoptic scale to the planetary scale

and the temporally upscale transfer from the daily time scale to the intraseasonal time scale

as well as a mean heat source. In fact, the upscale transfer from the synoptic scale to the

planetary scale from wave trains of thermally driven equatorial synoptic-scale circulations in

a moving convective envelope and the direct mean heating have been studied previously in a

multi-scale model for the MJO (Majda and Biello, 2004; Biello and Majda, 2005, 2006). In

the similar model setup here, we consider three different scenarios of the MJO induced by

synoptic-scale heating and planetary-scale heating, and all of them show some key features

of the MJO such as the horizontal quadrupole structure and upward/westward tilted vertical

structure. Then, by considering the upscale impact of the diurnal cycle from the daily time

scale to the intraseasonal time scale, we are able to obtain the planetary-scale circulation

response during the passage of the MJO over the Maritime Continent where the diurnal

cycle of tropical convection is typically significant. The resulting flow field and temperature

anomalies resemble some realistic features of the MJO behavior over the Maritime Continent

including stalling or termination.

The rest of this chapter is organized as follows. The model for the diurnal cycle and its

upscale fluxes over the Maritime Continent are summarized in section 2.2. The planetary-

scale circulation response to the intraseasonal impact of the diurnal cycle is shown in section

2.3. Section 2.4 describes three different scenarios for the MJO induced by synoptic-scale

heating and planetary-scale heating. In section 2.5, we discuss the intraseasonal impact

of the diurnal cycle on the MJO over the Maritime Continent and compare the resulting

flow fields and temperature anomalies with the observations. The chapter ends with con-

cluding summary and discussion. The detailed description for notations, dimensional units,
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parameters in the moving heat source for the MJO and the synoptic-scale equatorial weak

temperature gradient equations (Majda and Biello, 2004; Biello and Majda, 2005, 2006) can

be found in the appendix.

2.2 A model for the diurnal cycle and its upscale fluxes

over the Maritime Continent

The diurnal variability of tropical convection has attracted attention of the scientific commu-

nity in a long history. Early investigations of the diurnal variability of tropical precipitation

can date back to the 1920s (Ray, 1928). Due to the development of satellite measurements

and computers, more global datasets in higher resolutions such as the Tropical Rainfall Mea-

suring Mission (TRMM) are available for the scientific community to study convection in

the tropics. In fact, the TRMM dataset has already been utilized to study the diurnal vari-

ability of the global tropical precipitation over land and oceans (Nesbitt and Zipser, 2003;

Kikuchi and Wang, 2008). By applying empirical orthogonal function (EOF) analysis to two

complementary TRMM datasets (3B42 and 3G68) for 1998-2006, Kikuchi and Wang (2008)

concluded the persistence of the diurnal cycle of tropical precipitation with strong amplitude

in the continental regime and weak amplitude in the oceanic regime. According to the figure

2 in the paper (Kikuchi and Wang, 2008), the diurnal cycle of tropical convection over the

Maritime Continent is more significant than that over the Indian Ocean and the western

Pacific Ocean during boreal winter.

In the theoretical direction, the significant diurnal variability of tropical precipitation

is examined in some simple models for tropical convection by considering three types cloud

(congestus, deep and stratiform) to characterize organized tropical convection (Frenkel et al.,

2011b,d, 2013). Since latent heat released in tropical convection can drive the tropical

flow through thermodynamics (Hartmann et al., 1984; Larson and Hartmann, 2003a,b), the
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diurnal cycle of tropical precipitation can induce the diurnal variability of the flow field. By

following this underlying physical mechanism, the multi-scale model (Yang and Majda, 2014)

provides a set of equations governing the tropical flow associated with the diurnal cycle. In

this section, we use this set of equations for the diurnal cycle and discuss the corresponding

upscale fluxes on the planetary/intraseasonal time scale. The equations in dimensionaless

units appropriate for the daily time scale read as follows,

ũt − yṽ = 0 (2.1a)

ṽt + yũ = −p̃y (2.1b)

θ̃t + w̃ = S̃θ (2.1c)

p̃z = θ̃ (2.1d)

ṽy + w̃z = 0 (2.1e)

where all physical variables such as velocity ũ, ṽ, w̃ and potential temperature θ̃ have zero

mean on the daily time scale. More details about the notations and the dimensional units

can be found at Appendix A and the papers (Majda, 2007; Yang and Majda, 2014). Here we

assume rigid-lid boundary conditions at the surface and top of the troposphere, w̃|z=0,π = 0

where z = 0, π represent the surface and top of the troposphere separately.

The large-scale tropical flow can be modelled as atmospheric circulation response to dia-

batic heating (Gill, 1980). Here the thermal forcing S̃θ on the right side of Eq.2.1c is used to

represent latent heat release during tropical precipitation, thus a good cloud model can help

to provide an appropriate heating profile. On the other hand, the multicloud model convec-

tive parameterizations (Khouider and Majda, 2006c,a,b, 2007, 2008b,a) based on three cloud

types (congestus, deep and stratiform) have successfully reproduced some crucial features of

organized convection and tropical precipitation. In the multicloud models, the three types

of clouds are highlighted and they serve to provide the bulk of tropical precipitation and
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the main source of latent heat in the troposphere. In detail, the cumulus congestus clouds

heat the lower troposphere by latent heat release and cool the upper troposphere due to

the detrainment and high reflectivity of the clouds top. Deep convective clouds, which are

responsible for the majority of tropical precipitation, produce warming throughout the en-

tire troposphere. The stratiform clouds can heat the upper troposphere through deposition

and growth of precipitation particles and cool the bottom due to the evaporation of rainfall

and melting of ice precipitation. Therefore, the heating and cooling effects associated with

these three clouds types exhibit the first and second baroclinic modes of vertical structure

and here we incorporate these two baroclinic modes into the heating profile in dimensionless

units to mimic diurnal variability (Frenkel et al., 2011b,d, 2013) as follows,

S̃θ = F (X)H (y) [sin (kX + ωt) sin (z) + α sin (kX + ωt+ β) sin (2z)] (2.2)

F (X) = A0 cos

[
πX

2L

]+

;H (y) = H0e
−a(y−y0)2 . (2.3)

Here F (X) is large-scale convective envelope function, which only depends on the planetary

scale X in the zonal direction, while H(y) is the meridional profile of the heat source. At

each location with specific longitude and latitude, we utilize the first baroclinic mode for

deep convective heating and the second baroclinic mode for congestus and stratiform heating.

Both these two baroclinic modes are harmonically oscillating to mimic the diurnal cycle. The

phase shift between these two modes β and the relative strength of the second baroclinic

mode to the first baroclinic mode α are key parameters here. The exact expressions for the

envelope function and parameter values can be found in Appendix B.

According to the main conclusion in (Yang and Majda, 2014), the diurnal cycle of tropical

convection has significant intraseasonal impact through eddy flux divergence of potential

temperature associated with Eqs.2.1a-2.1e only during the solstices (boreal summer/boreal

winter). Meanwhile, the eastward propagating MJO typically occurs during boreal winter.

Therefore, we mainly focus on the case during boreal winter by setting the heating center
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Figure 2.1: The envelope function of the diurnal heating in longitude-latitude diagram during
boreal winter. The value here is dimensionless.

of the envelope function south of the equator. Fig.2.1 shows the envelope function of the

diurnal heating in longitude-latitude diagram during boreal winter, that is, F (X)H (y) in

Eq.2.2. This envelope function reaches maximum value at 1200 km south of the equator

with about 6600 km width in zonal direction, which resembles the observation such as the

figure 2(c) in (Kikuchi and Wang, 2008). This envelope profile mimics the localized effect of

the Maritime Continent in the model here.

Fig.2.2 shows the diurnal heating in time-height diagram for a given place with specific

X, y, that is, sin (kX + ωt) sin (z) + α sin (kX + ωt+ β) sin (2z). The alternating heating

and cooling at a given height is due to the opposite thermal effects by congestus clouds and

stratiform clouds as well as the intensification and diminishment of deep convective clouds.

In particular, the upward movement of the heating center can be used to describe three

clouds type (congestus, deep and stratiform) life cycle and mimic key features of the diurnal

cycle (Frenkel et al., 2011b,d, 2013).

Based on several essential assumptions and systematic multi-scale asymptotics, the multi-

scale model (Yang and Majda, 2014) shows that the resulting flow field forced by the diurnal
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Figure 2.2: The diurnal heating in time-height diagram during boreal winter. The value is
dimentionless.

heating model can generate eddy flux divergences of zonal momentum and temperature on

the intraseasonal time scale,

F u = − ∂

∂y
〈ṽũ〉 − ∂

∂z
〈w̃ũ〉 ;F θ = − ∂

∂y

〈
ṽθ̃
〉
− ∂

∂z

〈
w̃θ̃
〉

(2.4)

which can further drive the planetary-scale circulation response on the intraseasonal time

scale.

It has been shown in the appendix of (Yang and Majda, 2014) that the existence of

the second baroclinic mode for congestus/stratiform heating α and its phase shift from the

first baroclinic mode β are essential for the intraseasonal impact of the diurnal cycle, which

highlights the importance of the congestus and stratiform cloud heating during tropical con-

vection for the large-scale tropical circulation, besides deep convection. However, the exact

eddy flux divergences of zonal momentum and temperature are less sensitive to these two

parameters α, β in the sense that their magnitudes are determined by the product α sin(β)

while their spatial patterns are independent of α and β. Fig.2.3 shows the eddy flux diver-

gences of momentum and temperature in the latitude-height diagram during boreal winter.
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Figure 2.3: The eddy flux divergences of momentum and temperature F u, F θ in the latitude-
height diagram during boreal winter. The left panels from top to bottom show (a) eddy flux
divergence of momentum F u, (b) its meridional component − ∂

∂y
〈ṽũ〉 and (c) its vertical

component − ∂
∂z
〈w̃ũ〉. The right panels from top to bottom show (d) eddy flux divergence

of temperature F θ, (e) its meridional component − ∂
∂y

〈
ṽθ̃
〉

and (f) its vertical component

− ∂
∂z

〈
w̃θ̃
〉

. One dimensionless unit of F u is 1m/s/day and that of F θis 0.45K/day.
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According to Fig.2.3a and Fig.2.3d, the dimensionless eddy flux divergence of zonal momen-

tum from the diurnal cycle is weak and the eddy flux divergence of temperature provides

dominating intraseasonal impact on the planetary-scale circulation off the equator at the

southern hemisphere. There is a significant heating center in the middle troposphere of

the southern hemisphere and cooling surrounding this heating center shown in Fig.2.3d. In

addition, the magnitude of the heating in the middle troposphere is about two times as

large as that of the cooling in upper and lower troposphere, which indicates that the first

and third baroclinic modes are both significant in the intraseasonal impact of the diurnal

cycle. Fig.2.3b and Fig.2.3c show the meridional and vertical components of the eddy flux

divergence of momentum F u, and both of them have small magnitudes. Fig.2.3e shows

the meridional component of the eddy flux divergence of temperature F θ, which consists

of alternate heating and cooling at different latitudes. Fig.2.3f shows the dominating ver-

tical component of the eddy flux divergence of temperature F θ with heating in the middle

troposphere of the southern hemisphere and cooling in the upper and lower troposphere.
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2.3 The planetary-scale circulation response to the in-

traseasonal impact of the diurnal cycle

The planetary-scale tropical flow can be modelled by the large-scale circulation response

to a heat source such as latent heat release during tropical precipitation (Gill, 1980; Sobel

et al., 2001). In these studies, the long wave approximation and weak temperature gradient

approximation are discussed to further simplify the models. According to the multi-scale

model (Majda, 2007; Yang and Majda, 2014), it turns out that the governing equations for

the planetary-scale circulation response on the intraseasonal time scale are similar to the Gill-

type model but also forced by upscale flux divergences of momentum and temperature from

the daily time scale to the intraseasonal time scale. Due to the essential scaling assumptions

for large-scale tropical flow, this set of equations is also in long wave approximation (Majda

and Klein, 2003; Majda and Biello, 2004) and thus the eastward flow is in geostrophic balance

with the pressure gradient. Furthermore, the zonal momentum damping and the radiative

cooling have dissipation on the intraseasonal time scale (Mapes and Houze Jr, 1995; Lin et al.,

2005; Romps, 2014) and thus they can play a role here. The equations in dimensionless units

read as follows,

UT − yV = −PX − dU + F u, (2.5a)

yU = −Py, (2.5b)

ΘT +W = −dθΘ + F θ, (2.5c)

Pz = Θ, (2.5d)

UX + Vy +Wz = 0. (2.5e)

Here all physical variables represent daily time scale mean and depend on the intraseasonal

time scale T . The meridional circulation (V,W ) is the secondary flow compared with that
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on the daily time scale. More details about the notations and the dimensional units can

be found at Appendix A and the paper (Yang and Majda, 2014). Here we assume rigid-lid

boundary conditions at the surface and top of the troposphere, W |z=0,π = 0 where z = 0, π

represent the surface and top of the troposphere, separately. On the right side of Eqs.2.5a

and 2.5c, F u, F θ represent eddy flux divergences of zonal momentum and temperature from

the daily time scale to the intraseasonal time scale respectively,

F u = − ∂

∂y
〈ṽũ〉 − ∂

∂z
〈w̃ũ〉 ;F θ = − ∂

∂y

〈
ṽθ̃
〉
− ∂

∂z

〈
w̃θ̃
〉
. (2.6)

Here all these daily fluctuation components ũ, ṽ, w̃, θ̃ are from the model for the diurnal

cycle in Sec.2.2.

Since the forcing terms F u, F θ only involve the daily fluctuation components (ũ, ṽ, w̃, θ̃),

the planetary-scale circulation is driven by the upscale feedback from the daily time scale

to the intraseasonal time scale, as shown in the zonal momentum equation (Eq.2.5a) and

the thermal equation (Eq.2.5c). After solving Eqs.2.1a-2.1e to obtain the daily fluctuation

components (ũ, ṽ, w̃, θ̃), we can calculate the forcing terms F u, F θ based on the expression

(Eq.2.6) and their spatial patterns are shown in Fig.2.3. The resulting planetary-scale cir-

culation response governed by Eqs.2.5a-2.5e can be inferred with the forcing terms F u, F θ.

Fig.2.4 shows the horizontal flow field and pressure perturbation due to the intraseasonal

impact of the diurnal cycle at the upper troposphere (z = 11km) and lower troposphere

(z = 5km). The main feature is that there is a cyclone (anticyclone) at the lower (upper)

troposphere along with negative (positive) pressure perturbation in the southern hemisphere.

The minimum (maximum) pressure perturbation in the lower (upper) troposphere is located

south of the equator and slightly west of the diurnal heating center (the diurnal heating

center is at X = 0 shown in Fig.2.1). Such longitude difference between the pressure per-

turbation and diurnal heating can be explained by the westward propagating Rossby waves

off the equator.
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Figure 2.4: The horizontal flow field (shown by vectors) and pressure perturbation (shown
by color) due to the intraseasonal impact of the diurnal cycle. The height in the top panel
and bottom panels are 11 km and 5 km, respectively. The unit of pressure perturbation is
250m2s−2.
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Figure 2.5: The temperature anomaly at the heating center X = 0 in the latitude-height
diagram due to the intraseasonal impact of the diurnal cycle. The red color means warm
and blue color means cold. The unit of temperature anomalies is K.

In addition, thermodynamic characteristics of the planetary-scale circulation response

on the intraseasonal time scale are crucial properties since they are related with cloudiness

and precipitation in tropical convection. Fig.2.5 shows the temperature anomalies at the

latitude-height diagram due to the intraseasonal impact of the diurnal cycle during boreal

winter. The main feature is that in the southern hemisphere, there is a positive temperature

anomaly in the middle troposphere and negative temperature anomaly in the upper and lower

troposphere. The comparable magnitudes of positive and negative temperature anomalies

at different heights indicate that the third baroclinic mode is quite significant here. Also,

such temperature anomalies even extend to the northern hemisphere but in much weaker

magnitude. In a moist environment, negative potential temperature anomalies in the lower

troposphere can increase the convective available potential energy(CAPE) and reduce the

convective inhibition(CIN), which enhances the buoyancy of parcels in the free troposphere

and provides a favorable condition for tropical convection. Meanwhile, the negative temper-

ature anomaly reduces the saturation value of water vapor and promotes more convection in
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the lower troposphere. In contrast to that, the positive temperature anomaly in the middle

troposphere can suppresses deep convection in the opposite way.
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2.4 The MJO models forced by a moving heat source

On the intraseasonal time scale (30− 90 days), the eastward propagating MJO is the most

significant large-scale phenomenon in the tropical atmosphere, which typically initializes

over Equatorial Africa, intensifies over the Indian Ocean, gets weakened over the Maritime

Continent, sometimes redevelops over the western Pacific and dissipates near the date line

(Rui and Wang, 1990; Zhang, 2005). The MJO is organized on multiple spatial scales and

consists of coupled patterns of wind field and tropical convection.

Although individual MJO events may vary in the magnitude of convection and the spatial

patterns of atmospheric circulation in reality, the majority of MJO events share several

key features in the kinematic and thermodynamic characteristics, which should become an

important criterion for model validation. First of all, the velocity field exhibits horizontal

quadrupole structure with flow convergence in the lower troposphere and divergence in the

upper troposphere (Hendon and Salby, 1994). In the lower troposphere, the easterly winds

near the equator are accompanied by anticyclones to the east of the convection center. The

westerly winds near the equator are accompanied by cyclones to the west of the convection

center. In the upper troposphere, the horizontal quadrupole structure has opposite signs for

wind directions and pressure perturbation. Secondly, the westerly wind burst has a distinct

upward/westward tilt, meaning that the onset region of the westerly winds at the lower

troposphere is located to the west of that at the surface (Lin and Johnson, 1996; Yanai

et al., 2000).

In the theoretical direction, several mechanisms have been proposed to improve our un-

derstanding of the MJO and a lot of numerical modelling has been done to capture the

primary observed features of the MJO (Zhang, 2005). Having noticed that the planetary-

scale circulation associated with the MJO also lives on the intraseasonal time scale, we can

use the same equations (Eqs.2.5a-2.5e) from Sec.2.3 to model the MJO in an eastward propa-

gating convective envelope. In fact, besides the upscale flux divergences of zonal momentum
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and temperature from the daily time scale, these equations in the full multi-scale model

(Yang and Majda, 2014) are also forced by the upscale flux divergences of zonal momentum

and temperature from the synoptic scale (Majda and Biello, 2004; Biello and Majda, 2005).

The latter has been interpreted as upscale transfer from synoptic to planetary scales of mo-

mentum and temperature and used to construct a multi-scale model for the MJO (Biello

and Majda, 2005). Here we build three such MJO models in different scenarios forced by the

planetary-scale mean heating and the synoptic-scale heating in a moving convective envelope,

which exhibit several key features of the MJO as mentioned above.

2.4.1 The symmetric MJO with horizontal quadrupole structure

induced by the planetary-scale heating

Although individual MJO events may behave differently from each other, the statistical

composites of reanalysis data provide insight into the horizontal structure of the MJO en-

velope with key features (Hendon and Salby, 1994). One of the significant features of the

MJO is its horizontal quadrupole structure with cyclone/anticyclone pairs at both the lower

troposphere and upper troposphere.

In a long period with multiple MJO events, the overall convection field intensifies and

diminishes with changing rainfall at each specific location, which corresponds to the alternat-

ing active and suppressed phases of the MJO. Here we prescribe the planetary-scale heating

for latent heat release during tropical convection as follows

〈
Sθ
〉

= F (X − st)H (y) [sin (z) + α sin (2z)] , (2.7)

F (X) = A0(a2 −X2)e−a0X
2

;H(y) = H0e
−(y−y0)2 . (2.8)

The envelope function F (X − st) is used to mimic the eastward moving convective envelope

in Eq.2.7 and below. The MJO phase speed is prescribed by s = 5ms−1. Different from the
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Figure 2.6: The mean heating for the Madden-Julian Oscillation. The red color means
heating and blue color means cooling. One dimensionless unit of the heating is 4.5Kday−1

standard mean heating used by Biello and Majda (2005), the envelope function F (X) used

here is positive in the middle and negative on both sides, which resembles the active phase

of the MJO in the middle and suppressed phases on the two sides. In fact, such an envelope

function is crucial for the quadrupole structure of the resulting circulation response. The

meridional profile H(y) is a Gaussian shape function, symmetric about the equator. The

relative strength of the second baroclinic mode α = −0.25 is a parameter to adjust the

heating center in height. The exact expressions for the heating profile and parameter values

can be found in Appendix B.

As for the vertical structure of the heating in Eq.2.7, the first baroclinic mode represents

deep convection with maximum latent heat release in the middle troposphere. The second

baroclinic mode with negative strength coefficient α can be interpreted as stratiform precip-

itation with latent heat in the upper troposphere and cooling in the lower troposphere due

to rain evaporation. The combination of these two baroclinic modes leads to the top-heavy

heating profile as shown in Kiladis et al. (2005). Fig.2.6 shows the longitude-height diagram

for the planetary-scale heating at the equator. There is top-heavy heating in the middle
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of the convection envelope and cooling to the east and west of the convection region. The

planetary-scale heating decays as the latitude increases.

After prescribing such planetary-scale heating as shown in Fig.2.6, we can obtain the

planetary-scale circulation response on the intraseasonal time scale by letting this heating

to thermally force the Eqs.2.5a-2.5e. Fig.2.7 shows the horizontal flow fields with pressure

perturbation at the lower troposphere (z = 5km) and upper troposphere (z = 11km). The

horizontal quadrupole structure is clear at both levels. In addition, the pressure perturbation

is quite weak in the sense that its magnitude is much less than 1 in dimensionless units.

Meanwhile, the zonal winds at the lower and upper troposphere are out of phase, which is

consistent with the low-level flow convergence and upper-level flow divergence.

2.4.2 The symmetric MJO with westerly winds burst induced by

synoptic-scale heating and planetary-scale heating

A multi-scale model for the MJO with two spatial scales (the synoptic scale and planetary

scale) has been developed by (Majda and Biello, 2004; Biello and Majda, 2005, 2006). This

model accounts for both the upscale transfer from the synoptic scale to the planetary scale

of momentum and temperature from wave trains of thermally driven equatorial synoptic-

scale circulations in a moving convective envelope as well as direct mean heating on the

planetary scale. In addition, the model prescribes the heat source with dominant low-level

congestus convection to the east of the moving convective envelope and dominant upper-level

supercluster activity to the west.

Here we construct the two-scale MJO model driven by both the synoptic-scale heating

and planetary-scale heating in a similar way. The planetary-scale mean heating is similar

to that in Eq.2.7 but with α = 0 and A0 = 44.8 in Eq.2.7-2.8, which is used to mimic

deep convection at the alternating active and suppressed phases of MJO on the planetary

scale. On the synoptic scale, there are equatorial synoptic-scale heating in a eastward moving
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Figure 2.7: The horizontal flow field (shown by vectors) and pressure perturbation (shown
by color) forced by the standard mean heating. The top panel shows the flow field at height
z=11 km. The bottom panel is for height z=5km. Here one dimensionless unit of pressure
perturbation is 250m2s−2.
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Figure 2.8: Contours of synoptic scale heating and vectors of zonal/vertical velocity. One
dimensionless unit of heating, zonal velocity and vertical velocity correspond to 4.5Kday−1,
5ms−1, 1.6cms−1.

planetary-scale convective envelope. The synoptic-scale heating, in dimensionless units, reads

as follows,

S
′

θ = F (X − sT )H (y)

{
cos
(x
λ
− φ (T )

)
sin (z)− α (X − sT ) cos

(
x+ x0

λ
− φ (T )

)
sin (2z)

}
,

(2.9)

F (X − sT ) = A0 cos

[
π(X − sT )

2LF

]+

;H(y) = H0e
−a0(y−y0)2 ;α (X − sT ) = −8 (X − st)

3LF
.

(2.10)

Here F (X − st) is the moving envelope function where s = 0.1 corresponds to 5ms−1. The

magnitude of the convective envelope A0 = 1 is chosen to yield realistic magnitudes of wind.

The meridional profile H(y) is a Gaussian shape function, symmetric about the equator.

The first and second baroclinic modes are modulated by wave trains on the synoptic scale.

All the parameter values and their interpretation can be found in Appendix B and Biello

and Majda (2005).

In general, the synoptic-scale heating for the MJO can be on both the daily time scale and
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the intraseasonal time scale. For simplicity, here we only consider the case where the MJO

is driven by the heating across multiple spatial scales on the intraseasonal time scale and

discuss how the diurnal cycle on the daily time scale can impact the behavior of the MJO.

Through the assumption that the synoptic-scale heating only depends on the intraseasonal

time scale T instead of the daily time scale t, the synoptic-scale fluctuation components of all

physical variables satisfy the synoptic-scale equatorial weak temperature gradient (SEWTG)

equations (shown in Appendix C), which has been discussed in (Majda and Biello, 2004;

Biello and Majda, 2005, 2006). In the SEWTG equations, the momentum and thermal

damping do not play a role because of their longer time scale. Fig.2.8 shows the contours

of synoptic scale heating on the synoptic scale longitude-height diagram with the maximum

heating and cooling in the upper troposphere, which resembles the diabatic heating observed

in reality (Kiladis et al., 2005). The heating is upward/westward tilted with consistent rising

and sinking motions, which is used to characterize organized convective superclusters in the

convective envelope.

According to the full multi-scale model (Yang and Majda, 2014), the planetary-scale

circulation response can also be forced by the spatially upscale transfer from the synoptic

scale to the planetary scale, besides the temporally upscale transfer from the daily time scale

to the intraseasonal time scale. This spatially upscale transfer from the synoptic scale of

zonal momentum and temperature can be expressed as follows,

F u = −(u′v′)y − (u′w′)z;F
θ = −(θ′v′)y − (θ′w′)z. (2.11)

Here u′, v′, w′, θ′ are the fluctuation components with zero mean on the synoptic scale. The

bar represents spatial averaging on the synoptic scale and its exact definition can be found

at Appendix A.

Then we can consider the superimposition effect of the planetary-scale heating (Eq.2.7)

and the upscale transfer from the synoptic scale of zonal momentum and temperature
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Figure 2.9: The planetary-scale response to the equatorially symmetric MJO forced by both
synoptic-scale heating and mean heating. The color shows pressure perturbation, the flow
field is shown by vectors. From top to bottom, these 4 panels show the heights at z=0 km, z=4
km, z=8 km, z=12 km. The pressure perturbation is dimensionless and one dimensionless
unit corresponds to 250m2s−2.
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(Eqs.2.11), and let the combined forcing drive the planetary-scale circulation response on the

intraseasonal time scale (Eqs.2.5a-2.5e). Here for clear display, we reduce the magnitude of

the planetary-scale heating to 4
5

of its original value. Fig.2.9 shows the horizontal flow field

with pressure perturbation from this MJO model. The horizontal quadruple structure can

be found clearly at the surface, the lower and upper troposphere. In addition, the horizontal

flow field indicates flow convergence at the lower troposphere with upward/westward titled

westerlies .

On the other hand, the potential temperature anomaly field is one of the crucial thermo-

dynamic characteristics of the MJO. Fig.2.10 shows the horizontal flow field and temperature

anomalies from the same MJO model above. One of the significant features is that there

is very significant third baroclinic mode with a cold temperature anomaly at height 8 km

(Fig.2.10.c) and warm temperature anomalies at height 4 km (Fig.2.10.b) and height 12 km

(Fig.2.10.d) around the center of the convective envelope, which is intuitively consistent with

the hydrostatic balance assumption. The magnitude of the cold temperature anomaly at the

middle troposphere is larger than those of warm temperature anomalies at both the upper

and lower troposphere, which also indicates the significance of the first baroclinic mode for

the deep convection.

2.4.3 The asymmetric MJO with upward/westward tilt induced

by synoptic-scale heating and planetary-scale heating

Some MJO observations indicate that seasonal variations in convective activity can also affect

the planetary-scale atmospheric flow (Lin and Johnson, 1996). On the other hand, the zonal

winds and temperature anomalies associated with the MJO exhibit upward/westward tilted

vertical structure according to the observations (Lin and Johnson, 1996; Kiladis et al., 2005).

Therefore, it is interesting to construct a model for the MJO in tilted vertical structure

of easterlies and temperature anomalies, which also propagates eastward off the equator,
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Figure 2.10: The planetary-scale response to the equatorially symmetric MJO forced by both
synoptic-scale heating and mean heating. The color shows temperature anomalies, the flow
field is shown by vectors. From top to bottom, these 4 panels show the heights at z=0 km,
z=4 km, z=8 km, z=12 km. The unit of temperature anomalies is K.
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following (Biello and Majda, 2005).

Here we consider a meridionally asymmetric MJO model forced by both the synoptic-

scale heating and planetary-scale heating in a moving convective envelope off the equator.

Meanwhile, both the heating on the synoptic and planetary scales are upward/westward

tilted, which reflects the similarity of tropical convection across multiple scales. The synoptic-

scale heating can be expressed by Eq.2.9 except that the maximum heating is located at 900

km south of the equator. In contrast to the planetary-scale heating with constant relative

strength of the second baroclinic mode (Eq.2.7), here we vary the relative strength of the

second baroclinic mode α so that the heating center is located at the lower troposphere to

the east and the upper troposphere to the west. Such planetary-scale heating can be used to

characterize the low-level congestus heating to the east of the convection envelope and upper

troposphere supercluster heating to the west. The planetary-scale heating, in dimensionless

units, reads as follows

Sθ = F (X − st)H(y)

[
sin (z) +

3 (X − sT )

2LF
sin (2z)

]
, (2.12)

F (X − sT ) = A0 cos

[
π (X − sT )

2LF

]+

;H(y) = H0e
−(y−y0)2 , (2.13)

where the envelope function F (X − st) is used to mimic the eastward moving convective en-

velope. Compared with the planetary-scale heating in Eq.2.7 with constant relative strength

of the second baroclinic mode, the heating in Eq.2.12 has a relative strength coefficient in a

linear function so that the vertical profiles of the heating are different within the convective

envelope. The meridional profile H(y) is a Gaussian shape function which is asymmetric

about the equator. The exact expression for the heating profile and parameter values can

be found in Appendix B.

Similarly, we can consider the superimposition effect of the planetary-scale heating

(Eq.2.12) and the upscale transfer from the synoptic scale of zonal momentum and tempera-
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Figure 2.11: Planetary-scale response to equatorially asymmetric synoptic-scale and mean
heating centered at 900 km south. The panels shows flow vectors, red means positive pressure
perturbation, and blue means negative pressure perturbation at heights (a) 0, (b) 4, (c) 8,
(d) 12 km. The pressure perturbation is dimensionless.
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ture (Eqs.2.11) with the off-equator meridional profile, and let the combined forcing drive the

planetary-scale circulation response on the intraseasonal time scale (Eqs.2.5a-2.5e). Fig.2.11

shows the horizontal flow field and pressure perturbation from the meridionally asymmetric

MJO model with the synoptic-scale and planetary-scale heating centered at 900 km south.

At the equator, there are flow convergence in the lower troposphere and flow divergence in

the upper troposphere. The horizontal profiles of flow field and pressure perturbation exhibit

strong asymmetry with only one anticyclonic/cyclonic pair of gyres south of the equator.

Again, the potential temperature anomaly field is one of the crucial thermodynamic char-

acteristics of the MJO. Fig.2.12 shows the horizontal flow field and temperature anomalies in

the meridionally asymmetric MJO model with the synoptic-scale and planetary-scale heating

at 900 km south. One of significant features is that the temperature anomalies exhibit signif-

icantly the first and third baroclinic modes with a cold temperature anomaly in the middle

troposphere and warm temperature anomalies in both the upper and lower troposphere.
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Figure 2.12: Planetary-scale response to equatorially asymmetric synoptic-scale and mean
heating centered at 900km south. The panels shows flow vectors, red means positive tem-
perature anomaly, and blue means negative temperature anomaly at heights (a) 0, (b) 4, (c)
8, (d) 12 km. The temperature anomaly is in units of K.
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2.5 The intraseasonal impact of the diurnal cycle over

the Maritime Continent on the MJO

The MJO consists of large-scale dynamic field and tropical convection field in a coherent

structure and typically propagates eastward from the Indian Ocean to the Maritime Conti-

nent to the western Pacific Ocean (Zhang, 2005). Due to complex topography and tropical

convection over the Maritime Continent, the MJO exhibits quite different velocity and ther-

modynamic characteristics there from those over other regions (Wu and Hsu, 2009). For

example, the convection field associated with the MJO usually gets weakened during its

passage over the Maritime Continent (Rui and Wang, 1990). Furthermore, when the MJO

is over the Indian Ocean, its convective center sits in the region with flow convergence at the

surface. After the MJO goes across the Maritime Continent, the dynamic field has faster

propagation speed than the convection field so that the upper-level easterlies and low-level

westerlies include the convection center (Rui and Wang, 1990).

As we already know the fact that the diurnal cycle of tropical convection is very significant

over the Maritime Continent (Kikuchi and Wang, 2008), one possible reason for the complex

MJO behavior is its scale interaction with the diurnal cycle of precipitation based on the

observational evidence (Peatman et al., 2014). In the theoretical direction, based on the

multi-scale model (Yang and Majda, 2014), we concluded in Sec.2.2-2.3 that the diurnal

cycle has significant impact on both the atmospheric circulation and temperature anomalies

during boreal winter. By adding the intraseasonal impact of the diurnal cycle during the

passage of the MJO over the Maritime Continent, we can investigate how the intraseasonal

impact of the diurnal cycle will modify the velocity and thermodynamic characteristics of

the MJO and get intuition and mechanisms for the complicated behavior of the MJO. Since

we have already built three different models with some key features of the MJO in Sec.2.4,

in this section, we will discuss the intraseasonal impact of the diurnal cycle on these different
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MJOs separately.

2.5.1 the symmetric MJO with horizontal quadrupole structure

induced by the planetary-scale heating

The relative phase between the surface winds and convection center varies during the east-

ward propagation of the MJO from the Indian Ocean to the western Pacific Ocean. When the

MJO intensifies in the Indian Ocean, the convective center matches the surface flow conver-

gence. During the passage of the MJO over the Maritime Continent, however, the westerlies

dominates and thus the convection center is situated in low-level westerly winds, as suggested

by several observational studies. For example, Sui and Lau (1992) studied multiscale vari-

ability of the atmosphere during the boreal winter in 1979 and identified two intraseasonal

oscillations (ISOs) within the equatorial belt. They found that persistent westerly winds

are established in the region between 120◦ and 180◦ throughout the northern winter season.

Such persistent westerly winds are also observed in the monsoon intraseasonal variability

of 1987/1988 between 105◦ and 150◦ in the southern hemisphere (Waliser and Lau, 2005).

In addition, Rui and Wang (1990) investigated the development and dynamical structure of

intraseasonal low-frequency convection anomalies in the equatorial region with 200 and 850

mb wind data and found that there are strong westerlies over the convection region when

the convection anomaly reaches the Maritime Continent.

If we assume that the eastward propagating MJO can keep the coupled structure of

atmospheric circulation and convection as the one in the Indian Ocean, there are easterly

winds to the east of the convection center and westerly winds to the west. However, as the

observation shows, there are persistent westerly winds during the passage of the MJO over the

Maritime Continent. The significant diurnal cycle over the Maritime Continent can be the

essential reason. Due to the intraseasonal impact of the diurnal cycle of tropical convection,

the resulting cyclone dominates in the lower troposphere of the southern hemisphere and
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Figure 2.13: The horizontal flow field and pressure perturbation at z = 5 km due to the
intraseasonal impact of the diurnal cycle and the MJO. The panels from top to bottom show
different phases of MJO. The red circles shows the center of mean heating for MJO. The
black box shows the regime where diurnal cycle is significant during boreal winter. The
winds direction is shown by vectors and their magnitude is shown by the length of vectors.
The pressure perturbation is shown in color.
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generates westerlies at low latitudes of the southern hemisphere as shown in Fig.2.4, which

can explain the persistent lower-level westerly winds over the Maritime Continent. If the

strong westerlies due to the intraseasonal impact of the diurnal cycle can dominate over the

Maritime Continent in the southern hemisphere, the resulting low-latitude westerlies can be

significant during the passage of the MJO. Here we consider both the MJO with horizontal

quadrupole structure (Sec.refsubsec4.1B) and the intraseasonal impact of the diurnal cycle

in Sec.2.3. Fig.2.13 shows the horizontal velocity field under the impact of both MJO and

diurnal cycle at 5 km. The black box denotes the region between 15◦S ∼ 0◦ over the Maritime

Continent where the diurnal cycle is significant during boreal winter. One crucial feature

is that during the passage of the MJO, there are persistent westerly winds in the region

denoted by the black box in Fig.2.13, which matches well with the observation mentioned

earlier.

As for the upper troposphere, the convection center is situated in upper-level easterlies

during the passage of the MJO across the Maritime Continent (Rui and Wang, 1990). If we

assume that the eastward propagating MJO can keep the coupled structure of atmospheric

circulation and convection as the one in the Indian Ocean, there are westerly winds to the east

of the convection center and easterly winds to the west at the upper troposphere, which does

not match the observation described above. One of the reasons is the intraseasonal impact of

the diurnal cycle. Due to the anticyclone in the upper troposphere of the southern hemisphere

induced by the diurnal cycle (shown in Fig.2.4), the resulting upper-level easterlies at low

latitudes of the southern hemisphere can explain the persistent upper-level easterly winds

over the Maritime Continent. Here we consider both the MJO with horizontal quadrupole

structure (Sec.2.4.1) and the intraseasonal impact of the diurnal cycle in Sec.2.3. Fig.2.14

shows the horizontal velocity field under the impact of both MJO and diurnal cycle at 12

km. The white box denotes the region where the diurnal cycle is significant during boreal

winter. There are strong easterly winds over the region denoted by the white box when the

convection center moves to Maritime Continent, which matches the observation well.
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Figure 2.14: The horizontal flow field and pressure aperturbation at z = 12 km due to the
intraseasonal impact of the diurnal cycle and the MJO. The panels from top to bottom show
different phases of MJO. The red circles shows the center of mean heating for MJO. The
white box shows the regime where diurnal cycle is significant during boreal winter. The
winds direction is shown by vectors and their magnitude is shown by the length of vectors.
The pressure perturbation is shown in color.
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Figure 2.15: Contour of vertical motion at the middle troposphere due to the MJO and
intraseasonal impact of diurnal cycle. The panels from top to bottom show different phases
of MJO. The positive value means rising motion and negative value means sinking motion.
The white box shows the location where the diurnal cycle is significant. The red arrow shows
the longitude at which the center of MJO convection sits. The unit of vertical velocity is
0.16cm/s
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In order to explore the primary structure of the vertical motion, Rui and Wang (1990)

also calculate the differential divergence D200−D850, which can be considered as an estimate

of the vertical motion at middle troposphere. One significant feature is that at the period

when the convection center reaches the Maritime Continent, the large differential divergence

anomaly also moves into the Maritime Continent and reaches its maximum magnitude at

the low latitude of the southern hemisphere, meaning the intensifying rising motion in the

middle troposphere. On the other hand, the intraseasonal impact of the diurnal cycle in-

duces a heating center in the middle troposphere of southern hemisphere and cooling in the

upper and lower troposphere (shown in Fig.2.3). Correspondingly, there is rising motion

dominating in the middle troposphere of the southern hemisphere. Thus one possible reason

for the intensifying rising motion in the middle troposphere is due to the diurnal cycle. Here

we use the same model setup as above and Fig.2.15 shows the contour of vertical motion at

the middle troposphere (z = 7.85 km) associated with both the MJO and the intraseasonal

impact of diurnal cycle. The white box denotes the region where the diurnal cycle is sig-

nificant during boreal winter. One significant feature in this figure is that when the MJO

moves to the region denoted by the white box, the rising motion associated with the MJO

is doubled due to the intraseasonal impact of diurnal cycle, which resembles the observation

described above.

2.5.2 the symmetric MJO with westerly winds burst induced by

synoptic-scale heating and planetary-scale heating

Although individual MJO events vary in the propagation extent and convection strength,

some common features of the MJO events can be obtained by using composite MJO based on

a longer time period of observational satellite data. By focusing on the composite MJO using

10 years of outgoing longwave radiation (OLR) and 7 years of wind data, Rui and Wang

(1990) found that the eastward propagating convective anomaly typically gets weakened over

98



the Maritime Continent (Rui and Wang, 1990). One of the explanations for such weakening

convection anomaly is attributed to the direct topographic effect such as blocking and wave-

making effects (Wu and Hsu, 2009). Alternatively, here we try to explain the weakening

MJO convection by the intraseasonal impact of the diurnal cycle of tropical convection over

the Maritime Continent, which can be interpreted as the indirect topographic effect since

the significant diurnal cycle is associated with the low heat capacity of the land (Frenkel

et al., 2011b,d, 2013).

Here we consider both the symmetric MJO with westerly winds burst in Sec.2.4.2 and

the intraseasonal impact of the diurnal cycle in Sec.2.3. The relative strength of the diurnal

cycle is adjusted to 3
4

so that the magnitude of its temperature anomaly is comparable with

that from the MJO. In order to fully discuss the intraseasonal impact of the diurnal cycle

on the MJO, it is interesting to consider different phases of the MJO during its passage over

the Maritime Continent. Here we use three phases (phase I, phase II, phase III) to denote

different longitudes where the MJO convective center is located. Phase I corresponds to

the case when the MJO convective center is 8.1 × 103 km to the west of the diurnal cycle

heating center. In phase II, the MJO convective center is 2.4 × 103 km to the west and

phase III is the case with the MJO convective center 3.2× 103 km to the east. Fig.2.16-2.18

show the total planetary-scale circulation response with temperature anomalies as the MJO

propagates across the Maritime Continent. The center of the diurnal cycle heating is set

at X = 0. One important feature is that at Phase II, the temperature anomaly south of

the equator associated with the MJO is weakened by the intraseasonal impact of the diurnal

cycle. In fact, the intraseasonal impact of the diurnal cycle introduces temperature anomalies

in the first and third baroclinic modes in opposite sign with those from the MJO model,

which is quite clear at Phase I (shown in Fig.2.16) and Phase III (shown in Fig.2.18). Such

temperature anomaly cancellation can potentially explain the fact that the MJO convection

field gets weakened and even stalls during its passage over the Maritime Continent.
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Figure 2.16: The temperature anomalies associated with the equatorially symmetric MJO
and the intraseasonal impact of the diurnal cycle at phase I. The color shows temperature
anomalies, the flow field is shown by vectors. From top to bottom, these 4 panels show the
heights at z=0 km, z=4 km, z=8 km, z=12 km. The unit of temperature anomaly is K. The
red dot shows the center of the MJO convective activities.
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Figure 2.17: The temperature anomalies associated with the equatorially symmetric MJO
and the intraseasonal impact of the diurnal cycle at phase II. The color shows temperature
anomalies, the flow field is shown by vectors. From top to bottom, these 4 panels show the
heights at z=0 km, z=4 km, z=8 km, z=12 km. The unit of temperature anomaly is K. The
red dot shows the center of the MJO convective activities.
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Figure 2.18: The temperature anomalies associated with the equatorially symmetric MJO
and the intraseasonal impact of the diurnal cycle at phase III. The color shows temperature
anomalies, the flow field is shown by vectors. From top to bottom, these 4 panels show the
heights at z=0 km, z=4 km, z=8 km, z=12 km. The unit of temperature anomaly is K. The
red dot shows the center of the MJO convective activities.
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2.5.3 the asymmetric MJO with upward/westward tilt induced by

synoptic-scale heating and planetary-scale heating

It is also interesting to consider the asymmetric MJO with upward/westward tilt when the

MJO convective center located south of the equator. Here we consider both the asymmetric

MJO with westerly winds burst in Sec.2.4.3 and the intraseasonal impact of the diurnal

cycle in Sec.2.3. The relative strength of the diurnal cycle is adjusted to its 0.8 so that the

magnitude of its temperature anomaly is comparable with that from the MJO. Also, we

consider the three phases (phase I, phase II, phase III) as Sec.refsubsec5.2B. Fig.2.19-2.21

shows the temperature anomaly under the intraseasonal impact of the diurnal cycle during

the passage of the asymmetric MJO at Phase I, II and III. The intraseasonal impact of the

diurnal cycle introduces temperature anomalies in the first and third baroclinic mode in

opposite sign with those from the MJO model, which is quite clear at phase I (shown in

Fig.2.19) and Phase III (shown in Fig.2.21). During the phase II, the temperature anomaly

in the active phase of the MJO is cancelled by that from the intraseasonal impact of the

diurnal cycle. Such weakening temperature anomaly can potentially explain the fact that

some MJOs gets weakened and even stalls during its passage over the Maritime Continent.
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Figure 2.19: The temperature anomaly under the intraseasonal impact of the diurnal cycle
during the passage of the asymmetric MJO at Phase I. The panels shows flow vectors, red
means positive temperature anomaly, and blue means negative temperature anomaly at
heights (a) 0, (b) 4, (c) 8, (d) 12 km. The temperature anomaly is in units of K. The white
dot shows the heating center.
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Figure 2.20: The temperature anomaly under the intraseasonal impact of the diurnal cycle
during the passage of the asymmetric MJO at Phase II. The panels shows flow vectors,
red means positive temperature anomaly, and blue means negative temperature anomaly at
heights (a) 0, (b) 4, (c) 8, (d) 12 km. The temperature anomaly is in units of K. The white
dot shows the heating center.
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Figure 2.21: The temperature anomaly under the intraseasonal impact of the diurnal cycle
during the passage of the asymmetric MJO at Phase III. The panels shows flow vectors,
red means positive temperature anomaly, and blue means negative temperature anomaly at
heights (a) 0, (b) 4, (c) 8, (d) 12 km. The temperature anomaly is in units of K. The white
dot shows the heating center.
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2.6 Concluding summary and discussion

Tropical convection over the Maritime Continent is organized on multiple spatiotemporal

scales, ranging from cumulus clouds on the daily time scale over a few kilometers to in-

traseasonal oscillations over planetary scales. The diurnal cycle, the significant process on

the daily time scale, has stronger magnitude over the Maritime Continent than that over

the Indian Ocean and the western Pacific Ocean. On the other hand, the MJO, the signifi-

cant component of the intraseasonal variability of tropical convection, typically propagates

eastward across the Maritime Continent during boreal winter. To improve the present-day

comprehensive numerical simulations for tropical convection over the Maritime Continent, a

better understanding about the scale interaction between the diurnal cycle and the MJO is

necessarily required. In this chapter, we focused on the intraseasonal impact of the diurnal

cycle over the Maritime Continent on the MJO during boreal winter.

In the theoretical direction, the multi-scale analytic model with two time scales

(daily/intraseasonal) provides assessment of the intraseasonal impact of planetary-scale in-

ertial oscillations in the diurnal cycle (Yang and Majda, 2014). In detail, this multi-scale

model provides two sets of equations governing planetary-scale tropical flow on the daily

and intraseasonal time scale separately. Here we use the set of equations on the daily time

scale to model the diurnal cycle and that on the intraseasonal time scale for the planetary-

scale circulation response on the intraseasonal time scale. The latter is forced by eddy flux

divergences of zonal momentum and temperature from the daily time scale. Furthermore,

the full multi-scale model considers two spatial scales (synoptic/planetary) and two time

scales(daily/intraseasonal), and thus the planetary-scale circulation response is also forced

by eddy flux divergences of zonal momentum and temperature from the synoptic scale to

the planetary scale. In fact, the upscale transfer from the synoptic scale to the planetary

scale of momentum and temperature has been applied to successfully model the MJO based

on its multi-scale features (Majda and Biello, 2004; Biello and Majda, 2005, 2006).
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In the model for the diurnal cycle, diurnal heating in the first and second baroclinic mode

is prescribed to mimic latent heat release associated with three cloud types (congestus, deep

and stratiform) life cycle (Frenkel et al., 2011b,d, 2013). Such organized tropical flow in the

diurnal cycle can generate eddy flux divergences of momentum and temperature, which fur-

ther drives the planetary-scale circulation response on the intraseasonal time scale (Yang and

Majda, 2014). In particular, here we consider the diurnal heating during boreal winter with

the heating center sitting to the south of the equator. The resulting upscale flux divergence

of temperature has the dominating impact on the circulation response and exhibits a heating

center in the middle troposphere of the southern hemisphere and cooling at both the upper

and lower troposphere surrounding the heating center. The corresponding planetary-scale

circulation response on the intraseasonal time scale shows that such intraseasonal impact

of the diurnal cycle can induce a cyclone (anticyclone) in the lower (upper) troposphere as

well as significant temperature anomalies in the tropics. In a moist environment, partic-

ularly, the negative potential temperature anomaly in the lower troposphere can increase

the convective available potential energy(CAPE) and reduce the convective inhibition(CIN),

which enhances the buoyancy of parcels in the free troposphere and provides a favorable

condition for tropical convection. Meanwhile, the negative temperature anomaly reduces

the saturation value of water vapor and promotes more convection in the lower troposphere.

A positive temperature anomaly in the middle troposphere has the opposite effect and can

suppress deep convection.

By using the planetary-scale equations on the intraseasonal time scale, we model the

original MJO by the circulation response in a moving heat source without the impact of

the diurnal cycle. Since the real individual MJO events may differ in convection magnitude

and circulation pattern to each other, we consider MJO models forced by three different

types of the synoptic/planetary heating in a moving heat source. Each MJO model can

capture several key features of the MJO such as the horizontal quadrupole structure and

upward/westward tilt. Then, by considering the diurnal cycle during the passage of the
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MJO over the Maritime Continent, we try to answer the questions how the intraseasonal

impact of the diurnal cycle will modify the behavior of the original MJO and whether the

resulting velocity and thermodynamic characteristics match the observations.

The results are as follows. For the MJO with the horizontal quadrupole structure in-

duced by the planetary-scale heating, the intraseasonal impact of the diurnal cycle tends

to strengthen westerly winds in the lower troposphere and easterly winds in the upper tro-

posphere during the passage of the MJO over the Maritime Continent, which explains the

fact that the MJO convection center typically sits in the westerlies in the lower troposphere

and easterlies in the upper troposphere there. In addition, the intraseasonal impact of the

diurnal cycle can also strengthen the vertical motion in the middle troposphere. As for the

symmetric MJO with westerly wind burst induced by the synoptic-scale and planetary-scale

heating, the temperature anomaly associated with the MJO tends to get cancelled by that

from the intraseasonal impact of the diurnal cycle, which can explain the fact that MJO

events typically get weakened across the Maritime Continent. In fact, such temperature

anomaly cancellation is also significant in the asymmetric MJO with upward/westward tilt

induced by the synoptic-scale and planetary-scale heating. Tung et al. (2014) found that

during the passage of the MJO over the Maritime Continent, the symmetric MJO signals

such as the heating and drying signals diminish entirely and the corresponding off-equatorial

signals propagates with weakening strength. In contrast, the off-equatorial convection in the

asymmetric MJO convection passes the Maritime Continent without inhibition. One pos-

sible factor developed here to support the asymmetric MJO propagating off the equator is

the negative temperature anomaly induced by the intraseasonal impact of the diurnal cycle,

which provides a favorable condition for tropical convection off the equator.

This study has several important implications for physical interpretation and model pre-

diction. First, the diurnal cycle of tropical convection has significant upscale transfer of

temperature from the daily time scale to the intraseasonal time scale through eddy flux

divergence of temperature, which leads to another mechanism about the upscale impact of
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tropical convection from small spatiotemporal scales, besides convective momentum trans-

port (Majda and Biello, 2004; Biello and Majda, 2005). Secondly, the intraseasonal impact

of the diurnal cycle can significantly modify the MJO during its passage over the Maritime

Continent, which helps to explain the complex behavior of the MJO over the Maritime Con-

tinent and its scale interaction with the diurnal cycle. Thirdly, it emphasizes the significance

of the representation of the diurnal variability of tropical precipitation for comprehensive nu-

merical simulations. The present model can also be elaborated in several ways. For example,

the diurnal heating prescribed here is assumed to have zero mean on the daily time scale.

The diurnal heating with nonzero daily mean can generalize the framework and may be

more realistic for the tropical convection over the Maritime Continent. In addition, we only

consider the diurnal cycle of tropical convection on the planetary scale here. The diurnal

cycle on the synoptic scale or even smaller scales can be interesting for modelling individual

tropical convection events such as cumulus clouds.

2.7 Appendix

2.7.1 the dimensional units and notations in the multi-scale model

The full multi-scale model for the intraseasonal impact of the diurnal cycle of tropical

convection (Yang and Majda, 2014) is derived from the hydrostatic, anelastic Euler equa-

tions on an equatorial β-plane, which are the appropriate equations for large-scale phe-

nomenon in the tropical troposphere. This derivation follows using multiple-scale techniques

developed in (Majda and Klein, 2003; Majda, 2007). These equations have been nondi-

mensionalized first so that time scale is measured in units of the equatorial time scale

TE = (cβ)−1/2 ≈ 8.3h, the horizontal length scale is in units of the equatorial deforma-

tion radius LE = (c/β)1/2 = 1500km, the vertical length scale is in units of the troposphere

height divided by π, H = HT/π ≈ 5km. Here c is defined as the dry Kelvin wave speed
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Physical quantity Mathematical symbol Value
Froude number ε 0.1
Gravity wave speed c 50m/s
Brunt-vaisala frequency N 0.01s−1

Troposphere height HT 16km

Equatorial time scale TE (cβ)−1/2 = 8.3h

Equatorial deformation radius LE (c/β)1/2 = 1500km
Synoptic scale [x, y] LE = 1500km
Vertical scale [z] HT /π = 5km
Daily scale [t] TE = 8.3h
Zonal planetary scale [X] LP = LE/ε = 15000km
Intraseasonal scale [T ] TI = TE/ε = 3.5day
Horizontal velocity ũ, ṽ 5ms−1

Vertical velocity w̃ 1.6cms−1

Potential temperature anomaly θ̃ 1.53K
Zonal velocity on the intraseasonal time scale U 5ms−1

Meridional velocity on the intraseasonal time scale V 0.5ms−1

Vertical velocity on the intraseasonal time scale W 0.16cms−1

Potential temperature anomaly on the intraseasonal time scale Θ 1.53K
Momentum dissipation coefficient d 1/7days
Radiative cooling coefficient dθ 1/7 days

Table 2.1: The dimensional units for all physical variables and some constant parameters.
Here square brackets mean the value of one unit of the dimensionless variables corresponding
to the given scale.

and β denotes the Rossby parameter in the Beta plane approximation. The free tropo-

sphere occupies the domain −20 ∗ 103km ≤ x ≤ 20 ∗ 103km, −5 ∗ 103km ≤ y ≤ 5 ∗ 103km,

0km ≤ z ≤ 16km. The dimensional units for all physical variables and some constant

parameters are summarized in Table.2.1.

In order to consider the large-scale quantities after averaging about the small scales, two

averaging operators on the synoptic scale and daily time scale have been defined as follows

f̄ (X, t, T, y, z) = lim
L→∞

1

2L

∫ L

−L
f (x,X, t, T, y, z) dx (2.14)

〈f〉 (x,X, T, y, z) = lim
T ∗→∞

1

2T ∗

∫ T ∗

−T ∗
f (x,X, t, T, y, z) dt (2.15)

For all physical variables f , we can have its planetary-scale mean and synoptic-scale fluc-

tuation decomposition f = f̄ + f ′ and f ′ satisfies f̄ ′ = 0. Similarly, we can also have the

intraseasonal time mean and daily fluctuation decomposition f = 〈f〉 + f̃ and f̃ satisfies〈
f̃
〉

= 0.
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By using the averaging operator on the daily time scale, we can define the daily time

mean for all physical variables as follows, U = 〈u〉, V = 〈v2〉, W = 〈w2〉, Θ = 〈θ〉,P = 〈u〉.

Here v2 and w2 are at the second order and u, p, θ are at the first order in the asymptotic

expansion.

2.7.2 the expressions and parameters in the heating profile for the

diurnal cycle and MJO

2.7.2.1 the heating profile for the diurnal cycle

In the heating profile for the diurnal cycle in Eq.2.2, the envelope function F (X) and the

meridional profile H(y) are chosen as follows,

F (X) = A0 cos

[
πX

2L

]+

;H (y) = H0e
−a(y−y0)2 (2.16)

here F (X) is chosen to be half cosine function to mimic the Maritime Continent in about

6600km longitude width (L = 2
9
), and its magnitude is A0 =

√
5. The symbol for half cosine

function used in the following context has the same meaning. The meridional profile is

chosen to be a Gaussian shape function for simplicity. y0 = −0.8 is chosen to mimic the case

for boreal winter so that the latitude with maximum magnitude is at 10.8◦S, H0 = 1, a = 2.

The dimensionless parameters α = 2/3, β = π/4 are chosen to be physically consistent with

the three type clouds (congestus, deep and stratiform) life cycle. The dimensionless k is

chosen to be wavenumber 1 and ω corresponds to 1 day frequency for the diurnal cycle.
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2.7.2.2 the heating profile in the MJO model at the section 2.4.1

In the MJO model in Eq.2.7, the envelope function of the heating F (X) and the meridional

profile H(y) are chosen as follows,

F (X) = A0(a2 −X2)e−a0X
2

;H(y) = H0e
−(y−y0)2 (2.17)

here we choose the parameters in the envelope function A0 = 56, a = 0.2357, a0 = 9 so that

the zonal average of F (X) around the equator is zero. Such envelope function can mimic the

planetary-scale convection with the active phase in the middle and suppressed phases on the

two sides. Also, the circulation response to the planetary-scale heating is not sensitive to the

damping coefficients due to the zero zonal mean. As for the meridional profile, we choose

H0 = 2, y0 = 0 to mimic the MJO when it propagates along the equator and the convection

is trapped around equatorial regions. In order to mimic the deep convection and stratiform

cloud heating, we choose α = −1
4
.

2.7.2.3 the heating profile in the MJO model at the section 2.4.2

In the MJO model in Eq.2.9, the envelope function of the heating F (X − sT ) and the

meridional profile H(y) are chosen as follows,

F (X − sT ) = A0 cos

[
π (X − sT )

2LF

]+

;H(y) = H0e
−a0(y−y0)2 ;α (X − sT ) = −8 (X − st)

3LF
(2.18)

here LF = 1/3 represents 5000 km half width of the envelope, A0 = 1. y0 can be adjusted for

different seasons, H0 = 2
√

2, a0 = 0.6. It has been shown that the upscale flux divergence

is insensitive to many details of the wave train (Biello and Majda, 2005). Thus we pick

the cosine function for the wavelike structure for the synoptic scale fluctuations. λ = 0.65

measures the typical length scale of the wave packet and φ(T ) is for the time varying phases

of the convective supercluster. α is the ratio of stratiform to deep convective heating and
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x0 = 0.5 is phase difference between the stratiform and deep convective heating.

2.7.2.4 the heating profile in the MJO model at the section 2.4 and 2.4.3

In the MJO model in Eq.2.12, the envelope function of the heating F (X−sT ), the meridional

profile H(y) and the relative strength of the second baroclinic mode are chosen as follows,

F (X−sT ) = A0 cos

[
π (X − sT )

2LF

]+

;H(y) = H0e
−(y−y0)2 ;α (X − sT ) =

3 (X − sT )

2LF
(2.19)

here A0 = 1.08 is the magnitude of the convective envelope. L = 1/3 represents 5000 km

half width of the envelope. s = 0.1 corresponds to 5ms−1, H0 = 2. The maximum value for

the meridional profile y0 = −0.8 is chosen so that the heating reaches maximum value south

of the equator to mimic the boreal winter case. The envelope function is nonzero only in

the domain −L < X − st < L, thus the relative strength coefficient α varies in the range

[−3/2, 3/2].

2.7.3 the SEWTG equations

The synoptic-scale equatorial weak temperature gradient (SEWTG) equations were first

established based on the systematic derivation of the intraseasonal planetary equatorial syn-

optic dynamics(IPESD) model from the primitive equations (Majda and Klein, 2003). Then

they are utilized for wave trains of thermally driven equatorial synoptic-scale circulations in

a multi-scale model for the MJO (Majda and Biello, 2004; Biello and Majda, 2005, 2006).
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The equations, in dimensionless units, read as follows,

−yv′ + p′x = 0, (2.20a)

yu′ + p′y = 0, (2.20b)

w′ = S ′θ, (2.20c)

p′z = θ′, (2.20d)

u′x + v′y + w′z = 0. (2.20e)

Here all physical variables including the synoptic heating has zero mean on the synoptic

scale.
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Chapter 3

ITCZ Breakdown and Its Upscale

Impact on the Planetary-Scale

Circulation over the Eastern Pacific

3.1 Introduction

The ITCZ is a narrow band of cloudiness encircling the Earth in the tropics. Due to the

low heat capacity of the continental regions, a large portion of the energy that originally

comes from insolation is released back to the troposphere in the form of longwave radiation,

providing favorable conditions for tropical convection in the ITCZ (Ramage, 1968). Over the

oceanic regions, convective activity in the ITCZ is accompanied by warm sea surface temper-

atures, which increases evaporation and heat influx through the atmospheric boundary layer

(Zhang, 2001). Besides, low pressure in the ITCZ induces wind convergence in the lower

troposphere with the northeasterly trade winds to its north and southeasterly trade winds

to its south (Toma and Webster, 2010a). The early observational studies based on satellite

imagery can date back to the 1960s, where the variation of the visible brightness field affected

by all cloud types is used to estimate the convective field with cloudiness (Hanson et al.,
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1967; Hubert et al., 1969; Winston, 1971; Gruber, 1972). With the development of satellite

measurement in higher spatiotemporal resolutions, global-scale analysis for the ITCZ has

been done based on long-record satellite datasets, providing the community with concise

descriptions of global ITCZ climatology (Waliser and Gautier, 1993). In general, the ITCZ

in the continental regions such as Africa and South America and most of the oceanic regions

such as the Indian Ocean, the western Pacific and Atlantic Ocean migrates between the

Northern and Southern Hemispheres with the seasonal cycle. However, the eastern Pacific

ITCZ remains in the Northern Hemisphere along the latitudes between 5◦N and 15◦N all

year round. Such persistent location of the eastern Pacific ITCZ in the Northern Hemisphere

has attracted attention of the community, and many theoretical and numerical studies have

been undertaken to illustrate the underlying mechanism (Philander et al., 1996). Climate

models fail to capture this Northern Hemisphere persistence of the ITCZ, which is associated

with the so-called double ITCZ problem (Hubert et al., 1969; Zhang, 2001; Lin, 2007).

Instead of being a steady state, the ITCZ over the eastern Pacific is sometimes observed

to undulate and break down on the synoptic time scale (Ferreira and Schubert, 1997). In

details, the ITCZ first undulates and breaks down into several disturbances in the form

of displaced cloud clusters at different locations. Among these disturbances, some grow

to become tropical cyclones and others dissipate in the following several days. As tropical

cyclones move to high latitudes, a new ITCZ band of cloudiness reforms in the original place.

This whole process is referred to as the ITCZ breakdown. Since most of tropical cyclones

forming near the ITCZ (Gray, 1979) can significantly impact the local weather and global

atmospheric conditions, many physical mechanisms have been proposed to explain the ITCZ

breakdown. For instance, easterly waves are frequently observed in the Atlantic Ocean,

West Africa and the Pacific (Toma and Webster, 2010a,b), which can be an external reason

for the ITCZ breakdown as the westward moving synoptic-scale disturbances propagate to

the eastern Pacific and disturb the ITCZ flow field (Gu and Zhang, 2002). In addition,

internal instability such as the vortex roll-up mechanism (Hack et al., 1989; Ferreira and
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Schubert, 1997) involving a reversed meridional potential vorticity gradient field is proposed

to explain the ITCZ breakdown. As the ITCZ undulates and breaks down into disturbances,

the atmospheric flows get disturbed with cyclonic flows, which further impact the large-scale

circulation over the eastern Pacific (Wang and Magnusdottir, 2006).

In spite of many observational studies based on satellite measurement, understanding the

essential mechanism for the ITCZ breakdown and its upscale impact on the planetary-scale

circulation is still an unsolved problem. For example, the barotropic aspects of the ITCZ

breakdown are examined through a nonlinear shallow water model on the sphere (Ferreira and

Schubert, 1997). After prescribing a zonally elongated mass sink near the equator, a potential

vorticity strip with a reversed meridional gradient appears on the poleward side of the mass

sink, which is unstable with weak disturbances and resembles the ITCZ breakdown. However,

since the eastern Pacific ITCZ is characterized as a narrow band of cloudiness, air parcels

gain buoyancy and arise into the upper troposphere. Such baroclinic aspects of the ITCZ

breakdown are not captured by the shallow water model in Ferreira and Schubert (1997). On

the other hand, three-dimensional simulations using a primitive equation model have been

used to model the atmospheric flows during the ITCZ breakdown (Wang and Magnusdottir,

2005). In that work, a positive potential vorticity strip is generated in the lower troposphere

of the Northern Hemisphere with a reversed meridional gradient, while the potential vorticity

in the upper troposphere is negative with a broader meridional extent. As the potential

vorticity strip undulates and breaks down, the resulting vorticity anomalies resemble tropical

cyclones over several hundred kilometers in the eastern Pacific ITCZ. However, the upscale

impact of the atmospheric flows associated with the ITCZ breakdown on the planetary-scale

circulation is still unclear (Wang and Magnusdottir, 2005). The goal of this chapter is to

use a simple multi-scale model to address those issues including the baroclinic aspects of the

ITCZ breakdown and the upscale impact of mesoscale fluctuations on the planetary-scale

circulation through eddy flux divergence of zonal momentum.

In the theoretical directions, self-consistent multi-scale models based on multi-scale

118



asymptotic methods were derived systematically and used to describe such hierarchical struc-

tures of atmospheric flows in the tropics (Majda and Klein, 2003; Majda, 2007). The advan-

tages of using these multi-scale models lie in isolating the essential components of multi-scale

interaction and providing assessment of the upscale impact of the small-scale fluctuations

onto the large-scale mean flow through eddy flux divergence of momentum and temperature

in a transparent fashion. In particular, the modulation of the ITCZ (M-ITCZ) equations

(Biello and Majda, 2013) describe atmospheric flows on both the mesoscale and planetary

scale, which interact with each other in a completely nonlinear way. Such complete non-

linearity distinguishes itself from other multi-scale models (Biello and Majda, 2005, 2006;

Majda, 2007; Biello and Majda, 2010; Majda et al., 2010; Yang and Majda, 2014; Majda and

Yang, 2016), where large-scale mean flow and small-scale fluctuations are typically governed

by different groups of equations. Here a specific numerical scheme is designed to achieve

satisfactory accuracy without violating the asymptotic assumptions after the discretization

of the multi-scale system.

The M-ITCZ equations describe atmospheric dynamics on both the mesoscale and plan-

etary scale, which are the typical scales of atmospheric flows in the eastern Pacific ITCZ. On

the one hand, a single tropical cyclone and the associated cyclonic flows during the ITCZ

breakdown have a comparable size as the mesoscale components in the M-ITCZ equations,

and they are driven by latent heat release during precipitation of cloud clusters. On the

other hand, the planetary-scale velocity and temperature fields in the M-ITCZ equations

can be used to mimic the large-scale circulation pattern over the eastern Pacific, which is

characterized by a strong overturning circulation cell around the equator. Here the M-ITCZ

equations are used to simulate the ITCZ breakdown and its upscale impact of the disturbed

atmospheric flows associated with tropical cyclones on the planetary-scale circulation. To

begin with, an idealized scenario with zonal symmetry on the planetary scale is considered

so that the planetary-scale gravity wave is suppressed. On the mesoscale, zonally localized

heating is prescribed in the Northern Hemisphere to mimic diabatic heating associated with
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a single cloud cluster in the eastern Pacific ITCZ. Outside this heating region, horizontally

uniform cooling is prescribed to mimic radiative cooling and subsiding motion in the cold

and dry region such as the whole Southern Hemisphere (Toma and Webster, 2010a). Be-

sides deep meridional circulation in the eastern Pacific ITCZ, shallow meridional circulation

with northerly returning flows just above the atmospheric boundary layer is observed by

satellite measurement and dropsondes and wind profilers (Zhang et al., 2004; Nolan et al.,

2007; Zhang et al., 2008). Since the large-scale meridional circulation can be regarded as a

response to convective heating (Schneider and Lindzen, 1977; Gill, 1980; Wu, 2003), the re-

sulting mesoscale solutions in the M-ITCZ equations driven by deep convective heating and

shallow congestus heating are compared in terms of their different upscale impact. In fact,

the deep and shallow ITCZ breakdown classified by convection depth have been observed

and studied in Wang and Magnusdottir (2006). Then a more realistic scenario including

both mesoscale and planetary-scale dynamics is considered with the diabatic heating mod-

ulated by a convective envelope to mimic the eastern Pacific ITCZ. The upscale impact of

mesoscale fluctuations during the ITCZ breakdown can induce rectification of the planetary-

scale circulation over the eastern Pacific.

After prescribing the diabatic heating for latent heat release in the eastern Pacific ITCZ,

the M-ITCZ equations are initialized from a background state of rest and numerically in-

tegrated when forced by the diabatic heating. Several crucial results are obtained by di-

agnostically calculating eddy flux divergence of zonal momentum and comparing the flow

fields with mesoscale zonally localized and uniform heating in the first scenario. First, a

positive vorticity strip is generated in the northern side of the deep diabatic heating region

in the lower troposphere and undulates in the first two days, followed by the formation

of a strong vortex, which resembles the ITCZ breakdown as seen in observations (Ferreira

and Schubert, 1997). In the middle troposphere, a pair of vorticity dipoles form at low

latitudes of the Northern Hemisphere. The baroclinic aspects of the ITCZ breakdown is

examined here, including the vertical structure of vorticity and flow fields. Secondly, in the
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deep heating case, the eddy flux divergence of zonal momentum is characterized by mid-level

(low-level) eastward (westward) momentum forcing at high latitudes of the Northern Hemi-

sphere and alternate mid-level momentum forcing at low latitudes. As far as kinetic energy

is concerned, such eddy impact of the mesoscale dynamics accelerate mid-level zonal jets at

both low and high latitudes, and decelerate low-level zonal jets at high latitudes. Thirdly,

compared with deep convective heating, shallow congestus heating efficiently drives stronger

vorticity anomalies and induces more significant eddy flux divergence of zonal momentum

and acceleration/deceleration effects in the Northern Hemisphere, although the flow fields

are confined in the shallower levels. In the more realistic scenario where the mesoscale fluctu-

ations are coupled to the planetary-scale gravity waves, it is found that the most significant

zonal velocity anomalies are confined to the diabatic heating region while small zonal velocity

anomalies are transported away by the planetary-scale gravity waves. As for the rectification

of the planetary-scale circulation in the Northern Hemisphere, westerly wind anomalies are

induced at high latitudes of the lower and middle troposphere and low latitudes of the upper

troposphere, while easterly wind anomalies are induced around the equator in the middle

troposphere.

The rest of this chapter is organized as follows. The properties of the M-ITCZ equations

for mesoscale barotropic Rossby waves and planetary-scale gravity waves and conservation

of potential vorticity and kinetic energy are discussed in Sec.3.2. Sec.3.3 presents numerical

solutions for the ITCZ breakdown in zonally symmetric planetary-scale flow. Both deep

convective heating and shallow congestus heating cases are considered in the same model

setup and compared in terms of vorticity field, eddy flux divergence of zonal momentum and

acceleration/deceleration effects on the mean flow. Sec.3.4 considers the general case where

the diabatic heating is modulated by a planetary-scale convective envelope, explaining the

rectification of the planetary-scale circulation due to the ITCZ breakdown over the eastern

Pacific. This chapter ends with a concluding discussion. The numerical scheme for solving

the M-ITCZ equations is summarized in the Appendix.
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3.2 The M-ITCZ Equations and their properties

3.2.1 The governing equations

Inspired by the multi-scale features of tropical convection, the multi-scale asymptotic meth-

ods were used to derive reduced models across multiple spatiotemporal scales (Majda and

Klein, 2003; Majda, 2007). In particular, the M-ITCZ equations, derived in Biello and Ma-

jda (2013), describe the multi-scale dynamics of the ITCZ from the diurnal to monthly time

scales in which mesoscale convectively coupled Rossby waves are modulated by large-scale

gravity waves. The M-ITCZ equations in dimensionless units read as follows,

Du

Dt
− yv = −∂p

∂x
− ∂Π

∂X
− du, (3.1a)

Dv

Dt
+ yu = −∂p

∂y
− dv, (3.1b)

w = Sθ, (3.1c)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (3.1d)

∂Π

∂x
=
∂Π

∂y
= 0,

∂Π

∂z
= Θ, (3.1e)

∂Θ

∂t
+ 〈w̄〉 ∂Θ

∂z
+W = 0, (3.1f)

∂

∂X
[〈ū〉 − U ] +

∂W

∂z
= 0, (3.1g)

where D
Dt

= ∂
∂t

+ u ∂
∂x

+ v ∂
∂y

+ w ∂
∂z

is the advection derivative due to the three-dimensional

flow.

The M-ITCZ equations describe multi-scale flow fields in the tropical belt across two

zonal spatial scales (planetary-scale X, mesoscale x). Except for the large-scale pressure

gradient −ΠX in Eq.3.1a, the first four equations in Eqs.3.1a-3.1d govern tropical flows

on the mesoscale, where one dimensionless unit of (x, y) corresponds to 500 km and those

of horizontal and vertical velocity correspond to 5 ms−1 and 0.05 ms−1 respectively. The
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diabatic heating Sθ measured in units of 33 Kday−1 directly drives the mesoscale dynamics in

weak temperature gradient balance. The remaining three equations in Eqs.3.1e-3.1g describes

the zonal modulation of tropical flows on the planetary scale, where one dimensionless unit of

X corresponds to 5000 km. Such planetary-scale tropical flows are governed by hydrostatic

balance with potential temperature anomalies measured Θ in units of 3.3 K in Eq.3.1e,

thermal equation in Eq.3.1f and incompressibility constraint between the baroclinic mode of

large-scale zonal velocity and secondary vertical velocity W (in dimensional units of 0.005

ms−1) in Eq.3.1g. When coupled with the mesoscale mean zonal velocity and planetary-

scale pressure gradient in Eq.3.1a, the last three equations describe planetary-scale gravity

waves propagating zonally in the tropics. In order to obtain the mesoscale mean flow fields,

mesoscale zonal and meridional averaging operators defined for an arbitrary function f are

as follows.

f̄ (X, y, z, t) = lim
L→∞

1

2L

∫ L

−L
f (x,X, y, z, t) dx, (3.2)

〈f〉 (x,X, z, t) =
1

2L∗

∫ L∗

−L∗
f (x,X, y, z, t) dy, (3.3)

where L is the mesoscale zonal length of the domain in the asymptotic limit and L∗ measures

the finite poleward extent of the domain on the equatorial β plane. Besides, U denotes the

barotropic mode of mean zonal velocity 〈ū〉.

3.2.2 Mesoscale barotropic Rossby waves and planetary-scale

gravity waves

One crucial feature of the M-ITCZ equations is that the planetary-scale and mesoscale dy-

namics are nonlinearly coupled with each other. As already mentioned, such a model with

complete nonlinearity is quite different from multi-scale models where the flow fields on dif-

ferent scales are governed by different groups of equations. For example, the intraseasonal
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planetary equatorial synoptic dynamics (IPESD) model consists of two groups of equations

(Majda and Biello, 2004; Biello and Majda, 2005, 2006). One of them describes equatorial

synoptic-scale fluctuations and the other one is for the planetary-scale circulations. In the

IPESD model, the planetary-scale equations are forced by upscale transfer of momentum and

temperature from synoptic-scale fluctuations. In contrast, the M-ITCZ equations consists of

only one group of equations, which involve zonal variation on both the planetary scale and

mesoscale in a single time scale.

Although both the planetary-scale and mesoscale dynamics in the M-ITCZ equations are

completely coupled to each other, the mesoscale dynamics still can be isolated by assuming

zonal symmetry of the planetary-scale dynamics. Consequently, the planetary-scale pressure

perturbation term −ΠX in Eq.3.1a vanishes, Eqs.3.1a-3.1d decouple from Eqs.3.1e-3.1g , and

the equations for the mesoscale dynamics in dimensionless units become,

Du

Dt
− yv = −∂p

∂x
− du, (3.4a)

Dv

Dt
+ yu = −∂p

∂y
− dv, (3.4b)

w = Sθ, (3.4c)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (3.4d)

Eqs.3.4a-3.4d are called Mesoscale Equatorial Weak Temperature Gradient (MEWTG) equa-

tions (Majda and Klein, 2003), which consist of three-dimensional velocity field (u, v, w) and

pressure perturbation p. The nonlinear horizontal momentum equations on an equatorial β-

plane come with a linear momentum damping term, which is used to mimic cumulus drag in

large-scale tropical flows (Lin et al., 2005). Due to the Weak Temperature Gradient (WTG)

approximation (Sobel et al., 2001), the vertical velocity w is directly determined by the di-

abatic heating Sθ. The conservation of mass is guaranteed by the divergence-free constraint

and constant density in the Boussinesq approximation. The MEWTG equations have been
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applied to model a variety of physical phenomena in the tropical circulation. For exam-

ple, through a combination of exact solutions and simple numerics, some elementary exact

solutions and an exact nonlinear stability analysis about a model similar to the MEWTG

equations but on smaller scales and the f -plane are obtained in Majda et al. (2008). The

elementary solutions including the evolution of radial eddies to represent hot towers in a

hurricane embryo are studied in a suitable radial preconditioned background. Meanwhile,

similar equations to the MEWTG equations also appear in the balanced hot tower model

and balanced mesoscale vortex model as dynamical core, which are utilized successfully to

illustrate key mechanisms in the hurricane embryo (Majda et al., 2010).

By plugging the ansatz of plane waves into the linear MEWTG equations without thermal

forcing and momentum damping, the dispersion relation of barotropic Rossby waves can be

obtained (Majda and Klein, 2003),

ω = − k

k2 + l2
, (3.5)

where ω is the frequency and k, l are the wavenumber in the zonal and meridional direc-

tions. Such linear solutions with the dispersion relation of barotropic Rossby waves can have

arbitrary vertical structure including both barotropic and baroclinic modes.

As for the planetary-scale dynamics of the M-ITCZ equations, the planetary-scale equa-

tions can be obtained by applying the zonal averaging operators defined in Eq.3.2. In order

to guarantee the multi-scale asymptotic assumptions and avoid secular growth, all terms

involving mesoscale zonal derivative are assumed to be zero after taking mesoscale zonal av-

eraging. The resulting equations for the planetary-scale gravity wave in dimensionless units
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read as follows.

∂ū

∂t
+

∂

∂y
(v̄ū) +

∂

∂z
(w̄ū)− yv̄ = − ∂Π

∂X
− dū− ∂

∂y

(
v′u′
)
− ∂

∂z

(
w′u′

)
, (3.6a)

w̄ = S̄θ, (3.6b)

∂v̄

∂y
+
∂w̄

∂z
= 0, (3.6c)

∂Π

∂x
=
∂Π

∂y
= 0,

∂Π

∂z
= Θ, (3.6d)

∂Θ

∂t
+ 〈w̄〉 ∂Θ

∂z
+W = 0, (3.6e)

∂

∂X
[〈ū〉 − U ] +

∂W

∂z
= 0, (3.6f)

where 〈w̄〉 in Eq.3.6e vanishes if the rigid boundary condition for meridional velocity v̄ is

imposed for no inflow and outflow in the meridional boundaries. The prime notation denotes

mesoscale zonal fluctuations f = f̄ + f ′, satisfying f ′ = 0.

Eqs.3.6a-3.6f describe zonally propagating gravity waves on the planetary scale. The

meridional circulation (v̄, w̄) is directly determined by the diabatic heating Sθ with some

suitable boundary conditions. The zonal velocity ū is forced by advection effects of the

meridional circulation(v̄, w̄), the Coriolis force yv̄, planetary-scale zonal gradient of pressure

perturbation −ΠX , momentum damping −dū and eddy flux divergence of zonal momentum

−
(
v′u′
)
y
−
(
w′u′

)
z
. The meridional mean of zonal velocity in the baroclinic mode and

the secondary vertical velocity W have zero divergence. The equations are closed with the

hydrostatic balance in Eq.3.6d and thermal equation in Eq.3.6e. In fact, the planetary-scale

gravity wave equations without upscale fluxes have been studied in Biello and Majda (2013).

By prescribing the diabatic heating in the first baroclinic mode within a zonally localized

envelope, planetary-scale gravity waves are generated and propagate in both eastward and

westward directions. The planetary-scale gravity waves tend to equalize the meridional mean

of the vertical shear of zonal wind at all longitudes in the tropics. Meanwhile, they carry

cold temperature anomalies and upward velocity to the west, warm temperature anomalies
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and downward velocity to the east. In a moist environment, the cold temperature anomalies

and upward velocity provide favorable conditions for convection to the west and unfavorable

conditions for convection to the east.

3.2.3 Conservation of potential vorticity and kinetic energy

Here the conservation of potential vorticity (PV) and kinetic energy in the M-ITCZ equations

are discussed.

PV is a useful quantity to understand the generation of vorticity in cyclogenesis, which

is materially invariant in flows and can only be changed by diabatic and frictional processes.

In the M-ITCZ equations, planetary-scale quantities such as the large-scale pressure pertur-

bation ΠX do not depend on the mesoscale zonal and meridional coordinates (x, y), thus

the planetary-scale gravity wave does not directly modify vorticity and PV on the mesoscale

except for the advection of the mean zonal velocity. After taking the meridional derivative

of Eq.3.1a and the zonal derivative of Eq.3.1b along with the thermal equation in Eq.3.1c

and the continuity equation in Eq.3.1d, the equations for PV can be derived. We have,

DQ

Dt
= Q

∂Sθ

∂z
− ∂v

∂z

∂Sθ

∂x
+
∂u

∂z

∂Sθ

∂y
− dω, (3.7)

where Q = ω + y, is the summation of relative vorticity, ω = vx − uy, and the vorticity due

to earth rotation, y, on an equatorial β-plane.

One simple scenario is that both diabatic heating Sθ and momentum dissipation d are

assumed to be zero. Then all terms on the right hand side of Eq.3.7 vanish and Q is materially

invariant. In general, both diabatic heating Sθ and momentum dissipation d are nonzero

so that potential vorticity Q is also modified by several terms on the right hand side of

Eq.3.7. The first term QSθz = Qwz represents vortex stretching. The second and third terms

−vzSθx + uzS
θ
y = −vzwx + uzwy give rise to vortex tilting. The fourth term −dω describes

damping effect that has the same dissipation time as the zonal momentum, and its value is
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proportional to the vorticity ω instead of PV.

On the mesoscale, the vertical velocity w is directly balanced by the diabatic heating Sθ

in the M-ITCZ equations, whose vertical gradient also means wind divergence and conver-

gence due to the conservation of volume in Eq.3.1d. Meanwhile, the momentum damping d

in Eqs.3.1a-3.1b for cumulus drag has increasing dissipation time scale as height increases

(Romps, 2014), which tends to decelerate winds and restore the forced flows into equilibrium.

Therefore, the M-ITCZ equations with the prescribed diabatic heating profile is a forced and

damped model.

The conservation of kinetic energy can provide a better understanding of the dynam-

ical field, especially the acceleration/deceleration effects due to the upscale impact of the

mesoscale fluctuations. In details, the conservation of kinetic energy on the mesoscale can

be derived by multiplying the zonal momentum equation in Eq.3.1a by u and the meridional

momentum equations in Eq.3.1b by v and adding these two equations together as follows,

∂Km

∂t
+∇ · (Kmv + pu) = −pwz −

∂Π

∂X
u− 2dKm, (3.8)

where v = (u, v, w) represents three-dimensional velocity field and u = (u, v, 0) represents

horizontal velocity field. Km = u2+v2

2
denotes kinetic energy of horizontal flow field on the

mesoscale. Eq.3.8 is in the general form of the conservation of energy, which includes the

time tendency of kinetic energy, the kinetic energy fluxes and some source terms on the right

hand side. Specially, the kinetic energy flux term Kmv involves the three-dimensional flow

field, while only horizontal flows do work against pressure force in the term pu. The first

term −pwz at the right hand side of Eq.3.8 involves the vertical stretching of upward motion

against pressure, which is thermally driven by the diabatic heating. The second term −ΠXu

represents the acceleration/deceleration effects of the planetary-scale pressure perturbation

in the zonal direction. The third term −2dKm represents the energy dissipation due to

cumulus drag, which has half dissipation time scale as momentum dissipation.
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On the planetary scale, after multiplying Eq.3.6a by ū, the equation for kinetic energy

of zonal winds can be obtained as follows,

∂

∂t

(
ū2

2

)
+

∂

∂y

(
v̄
ū2

2

)
+

∂

∂z

(
w̄
ū2

2

)
= yv̄ū− ∂Π

∂X
ū− dū2 + F uū, (3.9)

where F u = −
(
v′u′
)
y
−
(
w′u′

)
z

is the eddy flux divergence of zonal momentum from the

mesoscale fluctuations. Similarly, the equation for kinetic energy of meridional winds can

also be obtained by using Eq.3.1b and multiplying v̄ ,

∂

∂t

(
v̄2

2

)
+

∂

∂y

(
v̄
v̄2

2

)
+

∂

∂z

(
w̄
v̄2

2

)
= −yv̄ū− ∂p̄

∂y
v̄ − dv̄2 + F vv̄, (3.10)

where F v = −
(
v′v′
)
y
−
(
w′v′

)
z

is the eddy flux divergence of meridional momentum from

the mesoscale fluctuations. By adding Eq.3.9-3.10 together, the equation for the total kinetic

energy reads as follows,

∂K

∂t
+

∂

∂y
(v̄K) +

∂

∂z
(w̄K) = − ∂Π

∂X
ū− ∂p̄

∂y
v̄ − 2dK + F uū+ F vv̄, (3.11)

where K = ū2+v̄2

2
represents the kinetic energy of horizontal flow.

Eq.3.11 describes the budget of horizontal kinetic energy on the planetary scale, including

the time tendency of kinetic energy and the kinetic energy fluxes in the meridional/vertical

directions on the left hand side, and some source terms on the right hand side. The kinetic

energy flux term (v̄K)y +(w̄K)z represents the advection effect of the planetary-scale merid-

ional/vertical circulation (v̄, w̄). On the right hand side, the first term −ΠX ū represents

the acceleration/deceleration effects of large-scale pressure gradient in zonal direction. The

second term −p̄yv̄ represents the acceleration/deceleration effects of pressure gradient in

meridional direction. The third term −2dK describes the energy dissipation due to cumulus

drag, which has half dissipation time scale as momentum dissipation. The last two terms,

F uū + F vv̄, denote the acceleration/deceleration effects due to mesoscale eddy flux diver-
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gence of zonal and meridional momentum. Furthermore, the first terms ∓yv̄ū on the right

hand side of Eq.3.9-3.10 cancel each other and do not show up in the kinetic energy equation

in Eq.3.11. In fact, these two terms represent energy transfer between the planetary-scale

zonal and meridional velocity due to the Coriolis force.

3.3 ITCZ Breakdown in Zonally Symmetric Planetary-

Scale Flow

The eastern Pacific ITCZ turns out to be an unstable environment where many tropical

cyclones are generated (Gray, 1979). One case of the ITCZ breakdown in the eastern Pacific

is observed in July of 1988 (Ferreira and Schubert, 1997), based on geostationary operational

environmental satellites (GOES) infrared (IR) images. In that case, the ITCZ was first seen

as an elongated zonal band of cloudiness off the equator in the eastern Pacific. After two

days, the ITCZ started undulating and breaking down into several tropical cyclones, which

moved into high latitudes, followed by the reforming of the ITCZ cloud band in its original

location. The atmospheric flows over the eastern Pacific are organized into a hierarchical

structure across multiple spatiotemporal scales. Such hierarchical structure of convective

and dynamical fields is a suitable scenario to use multi-scale models (Majda, 2007).

After the ITCZ breakdown, the resulting tropical cyclones are typically accompanied by

upward motion and cloud clusters over several hundred kilometers (Mapes and Houze Jr,

1993). Meanwhile, the large-scale meridional circulation including Pacific easterly waves over

the eastern Pacific has zonal extent of several thousand kilometers (Serra et al., 2008). On the

other hand, the M-ITCZ equations describe such multi-scale features across two zonal spatial

scales (planetary-scale Lp = 5000 km, mesoscale Lm = 500 km), which match well with the

typical length scale of small-scale tropical cyclones and the large-scale meridional circulation,

justifying the appropriateness of using the M-ITCZ equations to model the ITCZ breakdown
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and its upscale impact on the planetary-scale circulation. Over the eastern Pacific, the

large-scale meridional circulation has zonal variation due to boundary conditions such as sea

surface temperature gradient and atmospheric disturbance such as easterly waves (Toma and

Webster, 2010a,b). In order to model ITCZ breakdown in a simple scenario, the solutions of

the M-ITCZ equations are assumed to be zonally symmetric on the planetary scale so that

all derivatives about planetary-scale X vanish. Then the M-ITCZ equations in Eqs.3.1a-3.1g

are reduced to the MEWTG equations in Eqs.3.4a-3.4d, where Sθ stands for thermal forcing

such as diabatic heating in cloud clusters and radiative cooling effects.

For simplicity, local periodicity is imposed in mesoscale zonal direction and rigid-lid

boundary conditions are imposed in meridional and vertical boundaries. By taking both

zonal and meridional averaging and enforcing the boundary conditions in these two direc-

tions, Eq.3.4d reduces to 〈w̄〉z =
〈
S̄θ
〉
z

= 0, which means conservation of volume at each

level. Since vertical velocity vanishes in the rigid-lid vertical boundaries, an implicit con-

straint for diabatic heating can be derived as follows,

〈
S̄θ
〉

= 0, (3.12)

where the notation bar and angle bracket stand for mesoscale zonal and meridional averaging

as defined in Eqs.3.2-3.3.

The momentum dissipation for cumulus drag in the convective region is described by a

linear damping law in Eqs.3.4a-3.4b. The coefficient d in units of 1/day sets the time scale for

momentum dissipation on the mesoscale. According to the observation, momentum damping

time scale at the surface of the Pacific ocean could be as strong as 1 day (Deser, 1993) while

that at the upper troposphere is much longer. In general, the momentum damping of large-

scale circulation occurs on a time scale of O (1− 10) days, and also depends on the vertical

wavelength of the wind profile (Romps, 2014). For simplicity, the momentum damping

coefficient d is assumed to be a linear function of height d (z), which has 1 day damping time
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Name Symbol Length of Domain Grid Number Resolution

planetary-scale zonal X Lp = 4× 103km 41 ∆X = 0.976× 103km

mesoscale zonal x Lm = 0.976× 103km 81 ∆x = 12.045km

meridional y Ly = 3× 103km 241 ∆y = 12.5km

vertical z Lz = 15.7km 127 ∆z = 0.125km

temporal t T = 4days 1200 ∆t = 4.8min

Table 3.1: The multi-scale domain with nested grids and grid numbers and time steps in the
numerical simulations.

scale at surface and 10 days damping time scale at top of the troposphere.

Eqs.3.4a-3.4d are solved numerically by using a new method based on the Helmholtz

decomposition and a second-order corner transport upwind scheme to effectively resolve the

non-linear eddies. The details of the numerical scheme are summarized in the Appendix.

For the numerical simulations in Sec.3.4, the banded region from 15◦S to 15◦N circling

the globe in the tropics is chosen as the full domain with zonal extent 0 ≤ X ≤ 40× 103km.

As summarized in the Appendix, the coarse grid number Nxp is fixed and the zonal extent

of each mesoscale box is 0.976× 103km, which is in the same order as the mesoscale length,

Lm = 500km. In the numerical scheme with nested grids, each coarse cell corresponds to a

single mesoscale box with horizontal extent 0 ≤ x ≤ 0.976 × 103km,−1.5 × 103km ≤ y ≤

1.5 × 103km and the vertical extent 0 ≤ z ≤ 15.7km. Besides, the planetary-scale domain

and all mesoscale domains share the same vertical grids. The details about grid numbers

and grid spacing in the numerical simulations are summarized in Table.3.1 and Sec.3.4. Here

the planetary-scale variations are ignored and a relatively high spatial resolution for a single

mesoscale domain is chosen to resolve mesoscale eddies in the MEWTG equations. A short

time step is used for numerical accuracy and stability.

3.3.1 Deep and shallow heating profile

The dominating meridional circulation over the eastern Pacific consists of a strong overturn-

ing circulation cell around the equator and a weak one at high latitudes of the Northern

Hemisphere. The strong overturning cell around the equator expands over the whole tropo-
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sphere with southerly winds in its lower branch near the surface and northerly winds in its

upper branch near the tropopause, which is referred to deep meridional circulation. Such

deep overturning cell can be explained as the response of the large-scale circulation to deep

convective heating in the ITCZ (Schneider and Lindzen, 1977; Wu, 2003). The deep convec-

tive heating in the ITCZ comes from latent heat release during precipitation associated with

cloudiness such as deep convective cumulonimbus clouds, which tends to warm and dry the

entire troposphere and produce amounts of rainfall.

Here the deep convective heating Sθ for a single cloud cluster in dimensionless units is

prescribed as follows,

Sθ = cH (x, y)G (z)φ (t) , (3.13)

where heating magnitude coefficient c = 2 corresponds to the maximum heating rate 66K ·

day−1. H (x, y) is the horizontal envelope function shown in Fig.3.1a. The vertical heating

profile is the first baroclinic mode G (z) = sin (z), as shown in Fig.3.1c. φ (t) is the time

dependent heating magnitude, which linearly increases from 0 to 1 at day 1 and remains

constant afterwards. Since the typical life time of cloud clusters is between several hours

to several days (Mapes and Houze Jr, 1993), here 1 day in duration is set as initialization

time when the deep convective heating increases from zero to its maximum magnitude. The

prescribed diabatic heating Sθ is used to mimic convective heating associated with a single

deep cloud cluster in the ITCZ. As shown in Fig.3.1a, the deep heating is located at the

latitudes between y = 0km and y = 1.2 × 103km of the Northern Hemisphere and zonally

localized in the center of the mesoscale domain. Outside of the convective heating region

such as the Southern Hemisphere and high latitudes of the Northern Hemisphere, there is

horizontally uniform cooling in much weaker magnitude, which is used to mimic radiative

cooling in the troposphere.

The shallow meridional circulation is also significant in the meridional circulation over the

eastern Pacific, besides the deep meridional circulation. The existence of shallow meridional
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Figure 3.1: Horizontal and vertical properties of heating profiles in all scenarios. (a) hori-
zontal profile of zonally localized heating. (b) horizontal profile of zonally uniform heating.
(c) vertical profiles of heating and its gradient. (d) time series of the vorticity at the surface
in the Frobenius norm. The value is in dimensionless units.
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circulation is beyond the classic theory of the Hadley circulation over the eastern Pacific,

where deep convection typically dominates and drives meridional circulation with deep ver-

tical extent. By analyzing observational data from upper-air soundings, aircraft dropsondes

and wind profilers (Zhang et al., 2004), the shallow meridional circulation is identified as a

circulation cell with its northerly cross-equatorial return flow above the atmospheric bound-

ary layer from the ITCZ into the Southern Hemisphere. The causes and dynamics of the

shallow meridional circulation are explained by a large-scale sea-breeze circulation theory and

an idealized Hadley circulation simulation driven by moist convection in a tropical channel

(Nolan et al., 2007).

As suggested by many theoretical studies (Schneider and Lindzen, 1977; Gill, 1980; Wu,

2003), the large-scale tropical circulation can be regarded as the response to convective heat-

ing associated with tropical precipitation. Correspondingly, the diabatic heating associated

with the shallow meridional circulation has shallower vertical extent than that of deep con-

vective heating. Here the shallow congestus heating Sθ in dimensionless units is prescribed in

the same general expression in Eq.3.13, and heating magnitude coefficient cs is 1 (maximum

heating rate 33K · day−1). The horizontal profile H (x, y) and time series φ (t) are the same

as Eq.3.13. The vertical profile of shallow congestus heating G (z) is prescribed in Fig.3.1c

and reaches its maximum value around the height z = 4 km , while that of deep convective

heating reaches maximum value at the height z = 7.8 km. According to the conservation

of volume in Eq.3.4d, horizontal wind divergence is proportional to the gradient of G (z) as

shown in Fig.3.1c. Firstly, the magnitude of wind convergence at the surface in the shallow

congestus heating case is more than twice as much as that in the deep convective heating

case. Secondly, compared with the deep convective heating case, the maximum wind diver-

gence in the shallow heating case is near the height z = 6 km, which qualitatively matches

well with the returning flows above the atmospheric boundary layer in the shallow meridional

circulation (Zhang et al., 2004).

In the following discussion, two deep heating cases are considered. The strong deep
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heating case (deep2: magnitude coefficient c = 2) indicates the significant baroclinic aspects

of ITCZ breakdown. The relatively weak deep heating case (deep1: magnitude coefficient

c = 1) in the same maximum heating magnitude as the shallow heating is used for comparison

with the shallow heating case. According to Fig.3.1d, the spin up time for all the scenarios

is around 3 days, here the numerical solutions at day 4 are mainly chosen for discussion.

3.3.2 Formation and undulation of a positive vorticity strip

In the ITCZ, convective activities occur with large amounts of rainfall, which release latent

heat and lift air parcels to higher levels. Due to the conservation of mass, such upward

motion of air leads to wind convergence (divergence) in the lower (upper) troposphere. Under

the Coriolis force, the southerly (northerly) winds to the south (north) of the ITCZ in

the Northern Hemisphere deflect to the right side and generate westerly (easterly) winds,

resulting in meridional shear of zonal winds in the lower troposphere. Such meridional shear

of zonal winds is characterized by a positive vorticity strip in the Northern Hemisphere.

Therefore, the ITCZ breakdown can be visualized through the vorticity strip dynamics from

its formation and undulation in the early stage to its breakdown into several vortices later.

In this section, such a scenario involving a positive vorticity strip is captured.

Fig.3.2a-c shows the horizontal profile of velocity and vorticity fields at the surface during

the first 4 days in the deep2 heating case. At day 1 in Fig.3.2a when the magnitude of diabatic

heating reaches its maximum, a positive low-level vorticity strip develops on the poleward

side of the diabatic heating region. It is centered at the latitude y = 750km. As explained

above, such a positive vorticity strip with meridional shear of zonal winds is related to wind

convergence in the low troposphere and meridional wind deflection due to the Coriolis force.

Meanwhile, the positive vorticity has nearly zonally uniform strength along all longitudes of

the diabatic heating region. At the lower latitudes of the Northern Hemisphere, southerly

winds deflect to the right side due to the Coriolis force and generate westerly wind anomalies.
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Figure 3.2: Horizontal profiles of velocity (arrow) and vorticity ω = vx − uy (color) in the
longitude (horizontal axis, 103 km) and latitude (vertical axis, 103 km) diagram in the deep2
heating case. The columns from left to right are for different heights from 0 km to 7.85 km
to 15.7 km. The first three rows are for different days from Day 1 to Day 2 to Day 4. The
last row is for the zonally uniform heating case. The panels in each column share the same
color bar at the bottom. The maximum velocity magnitude is shown in the title of each
panel and vorticity has units of day−1.
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Stronger westerly winds are generated as the Coriolis coefficient increases on the equatorial β-

plane. Therefore, such positive meridional shear of zonal velocity induces negative vorticity

anomalies at low latitudes of the Northern Hemisphere. Besides, winds in the Southern

Hemisphere blow from the southeast, which has similar wind direction and magnitude as

the trade winds (Wyrtki and Meyers, 1976). At day 2 in Fig.3.2b, the magnitude of the

positive vorticity strip in the Northern Hemisphere gets strengthened. The zonally elongated

vorticity strip starts to undulate with its eastern end moving northward and western end

moving southward, which is reminiscent of the undulation process of cloudiness during the

ITCZ breakdown. Besides, negative vorticity anomalies at low latitudes of the Northern

Hemisphere have stronger magnitude and broader zonal extent. The horizontal flow field has

increasing maximum wind magnitude but its horizontal spatial pattern is similar to Fig.3.2a.

At day 4 in Fig.3.2c, the magnitude of the positive vorticity strip continuously increases and

its maximum value reaches about 16day−1 ≈ 1.85× 10−4s−1, which is comparable with the

observational data as well as numerical simulations (Ferreira and Schubert, 1997). As both

ends of the positive vorticity strip undulate in weak magnitude, a strong positive vortex forms

in the middle, resembling the formation of tropical cyclones. In addition, such a positive

vorticity strip is surrounded by negative vorticity anomalies in both its northern and southern

sides. Although the maximum wind strength still increases, the spatial pattern of horizontal

flow field is quite similar to that in the early stage.

One interesting phenomenon with regard to the numerical solutions in Fig.3.2a-c is that

the zonally elongated positive vorticity strip is located in the northern side of the diabatic

heating region. The underlying mechanism can be explained as follows. First, as far as the

mesoscale zonal mean flow is concerned, the conservation of volume is guaranteed through

the divergence-free meridional circulation in Eq.3.4d,

∂v̄

∂y
+
∂w̄

∂z
= 0, (3.14)
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Considering the fact that there are a strong circulation cell around the equator and a weak

circulation cell in the Northern Hemisphere, the southerly winds in the lower branch of the

strong circulation cell are prevailing in the Southern Hemisphere and low latitudes of the

Northern Hemisphere, and vanishing at the latitude where upward and downward motion

to its south exactly cancel by each other. Since downward motion to the south of the

diabatic heating region occurs in much broader area than that to the north, the latitude

where meridional winds vanish is located in the northern side of the diabatic heating region,

generating negative meridional shear of zonal winds (positive vorticity anomalies ω = vx−uy).

Secondly, PV (Q = ω + y) is advected by three-dimensional flow and forced by several

terms involving gradient of diabatic heating as well as damping in Eq.3.7. Since meridional

winds converge in the Northern Hemisphere, the vorticity ω decreases (increases) due to the

increasing (decreasing) mean PV y to the south (north), resulting in poleward displacement

of positive vorticity anomalies.

The other interesting phenomenon arising in the numerical solutions in Fig.3.2a-c is

the undulation of the positive vorticity strip and the resulting strong positive vortex in

its middle, which describes a similar scenario for the ITCZ breakdown. According to the

conservation of volume in Eq.3.4d, horizontal wind convergence is induced by the accelerating

upward motion in the lower troposphere in the heating region. Due to the Coriolis force,

the southerly (northerly) winds to the south (north) of the ITCZ deflect to the right side,

which then become southwesterly (northeasterly) winds. The overall flow field near the

diabatic heating region tends to rotate counterclockwise, and advect the eastern (western)

end of the positive vorticity strip poleward (equatorward) as shown in Fig.3.2b-c. Such

undulation of the positive vorticity strip in the rotational flows due to the zonal asymmetry

and the Coriolis force is related with the ‘vortex roll-up’ mechanism, which is one of the

main mechanisms used to explain the eastern Pacific ITCZ breakdown (Hack et al., 1989;

Ferreira and Schubert, 1997; Wang and Magnusdottir, 2005).

The vertical structure of the deep heating in Fig.3.1c reaches maximum value in the
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middle troposphere at height z = 7.48 km. Fig.3.2e-g shows the horizontal profile of velocity

and vorticity field in the middle troposphere during the first 4 days in the deep2 heating

case. A positive vorticity strip is generated in the northern side of the diabatic heating

region, gets strengthened at day 2 in Fig.3.2f, undulates and breaks down into a strong

vortex in the middle at day 4 in Fig.3.2g. Besides, a pair of vortex dipoles form at low

latitudes of the Northern Hemisphere with negative (positive) vorticity anomalies to the

east (west). Such vortex dipoles can be explained through the PV equation in Eq.3.7,

where PV anomalies are forced by the vorticity tilting term −vzSθx. The low latitudes of

the Northern Hemisphere are dominated by southerly winds in the lower troposphere and

northerly winds in the upper troposphere, indicating negative vertical shear of meridional

velocity. On the other hand, zonal gradient of diabatic heating is negative (positive) to its

eastern (western) end. Therefore, the product term −vzSθx has a negative (positive) value

to the eastern (western) end of the diabatic heating region, resulting in a pair of vortex

dipoles with negative (positive) anomalies to the east (west) of the heating maximum. As

far as the velocity field is concerned, the strong positive vortex in the northern side of the

diabatic heating and the western vortex dipole come along with cyclonic flows, while the

eastern vortex dipole comes along with anticyclonic flows. In the Southern Hemisphere, the

prevailing westerly winds in gradually increasing wind strength, and the maximum westerly

wind occurs at the latitude y = −103 km.

Horizontal flows at the top diverge over the deep heating region and move northward

and southward afterwards. Fig.3.2i-k shows the horizontal profile of velocity and vorticity

fields near the top of the troposphere during the first 4 days in the deep2 heating case. As

a counterpart of the positive vorticity strip at surface, a negative vorticity strip is generated

in the Northern Hemisphere. Since PV is advected by the three-dimensional flow in Eq.3.7,

this negative vorticity strip has broader meridional extent and weaker magnitude due to the

advection effects of meridionally divergent winds. As far as the velocity field is concerned,

the strong meridional shear of westerly winds at high latitudes of the Southern Hemisphere

140



results in strong vorticity anomalies near the southern boundary. Since the momentum

damping strength at the top of the domain is only 1/10 of that at surface, the maximum

wind magnitude at the top is much stronger than those at lower levels.

Compared with the deep convective heating in Fig.3.1c, shallow congestus heating has

stronger vertical gradient near the surface when the maximum heating magnitudes are the

same. Such large vertical gradient of upward motion also means stronger horizontal wind

convergence at the surface, which can accelerate the ITCZ breakdown as shown in the other

study (Wang and Magnusdottir, 2005).

Fig.3.3a-c shows the horizontal profile of velocity and vorticity fields at the surface in

the first 4 days in the shallow heating case. The velocity and vorticity fields share many

similar features with those in the deep convective heating case in Fig.3.2a-c, including the

formation and undulation of a positive vorticity strip. In spite of the similarity, a direct

comparison is not appropriate since the maximum shallow congestus heating is 33Kday−1

while the maximum deep convective heating is 66Kday−1. Fig.3.3d-f shows the horizontal

profile of velocity and vorticity fields at the surface in the deep1 heating case with maxi-

mum heating magnitude 33Kday−1. In contrast, there are no significant positive vorticity

anomalies in the middle of the positive strip after 4 days. As for the horizontal wind field,

both cases with deep/shallow heating share similar spatial patterns with cyclonic flows in the

Northern Hemisphere, southerly winds around the equator and southeasterly winds in the

whole Southern Hemisphere, but the maximum wind strength in the deep1 heating case in

Fig.3.3d-f is about half that in the shallow heating case in Fig.3.3a-c. In fact, such stronger

horizontal velocity and vorticity fields in the shallow heating case have been emphasized in a

model for hot towers in the hurricane embryo (Majda et al., 2008) and the ITCZ breakdown

in three-dimensional flows (Wang and Magnusdottir, 2005).

Different from the deep convective heating case, the velocity and vorticity fields in the

shallow heating case are confined in the lower troposphere. Fig.3.3g-i shows the horizontal

profile of velocity and vorticity field at height z = 7.48 km in the shallow heating case.
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Figure 3.3: Horizontal profiles of velocity (arrow) and vorticity ω = vx − uy (color) in the
longitude (horizontal axis, 103 km) and latitude (vertical axis, 103 km) diagram in the shallow
heating case. The left column is for the height 0 km and the right column is for 7.85 km.
The middle column is for deep1 heating case at the height 0 km. The first three rows are
for different days from Day 1 to Day 2 to Day 4. The panels in each column share the same
color bar at the bottom. The maximum velocity magnitude is shown in the title of each
panel and vorticity has units of day−1.

142



Again, the overall spatial pattern of the velocity and vorticity fields is quite similar to that

in the deep convective heating case with doubled magnitude in Fig.3.2i-k. Over the diabatic

heating region in the Northern Hemisphere, divergent winds prevail and negative vorticity

anomalies have broader meridional extent. The whole Southern Hemisphere is dominated by

zonally uniform westerly winds with the maximum wind magnitude at y = 103 km, resulting

in positive meridional shear of zonal winds (negative vorticity) near the southern boundary.

3.3.3 Vertical stretching of wind and vorticity fields

Deep clouds such as cumulonimbus have vertical extent throughout the whole troposphere,

warm and dry the entire troposphere, contributing the majority of tropical rainfall (Khouider

and Majda, 2008b). During convective periods associated with deep clouds in the ITCZ,

warm and moist air parcels have enough buoyancy to get lifted up from the atmospheric

boundary layer to the upper troposphere. Besides, the upward motion in the ITCZ has sig-

nificant wind strength in the free troposphere, and it serves to transport energy and moisture

from the lower troposphere to the upper troposphere. In contrast, shallow meridional circu-

lation is characterized by a northerly return flow just above the atmospheric boundary layer

(Zhang et al., 2004). In the northern branch of the overturning circulation cell, the upward

motion over the eastern Pacific ITCZ is driven by shallow congestus heating, which is con-

fined in the lower troposphere. On the other hand, the MEWTG equations in Eqs.3.4a-3.4d

are fully nonlinear with the thee-dimensional advection effects. Considering that vertical

velocity is directly balanced by diabatic heating in Eq.3.4c, persistent upward motion exists

in the diabatic heating regions, advecting both horizontal velocity and vorticity field upward

and resulting in the vertical stretching of these fields.

Fig.3.4a-c shows the vertical profile of horizontal velocity and vorticity fields along the

latitude y = 0.8 × 103 km at day 4 in the deep2 heating case. As shown in Fig.3.4c,

a positive vorticity disturbance is located in the middle longitude of the mesoscale domain
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Figure 3.4: Vertical profiles of zonal velocity, meridional velocity and vorticity at Day 4.
The columns from left to right are for zonal velocity, meridional velocity and vorticity. The
first row (a-c) shows solutions along the latitude 0.8 × 103 km in the deep2 heating case.
The third row (g-i) shows solutions along the longitude 0.43× 103 km in the deep2 heating
case. The second and fourth rows are the same as the first and third rows but for shallow
heating case. The dimensional units of horizontal velocity and vorticity are ms−1 and day−1

respectively.
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with its maximum magnitude at the surface. Due to persistent upward motion in the diabatic

heating region, the positive vorticity, which characterizes cyclonic flows following the ITCZ

breakdown, extends to the upper troposphere. As far as the horizontal flow field in Fig.3.4a-

b is concerned, the cyclonic flows associated with the positive vortex also stretch vertically

over the whole troposphere and their vertical structure becomes dominated by the barotropic

mode. Fig.3.4d-f shows the same fields in the shallow heating case. Both velocity and

vorticity fields are confined to the much shallower levels compared with those in the deep

heating case. Since the positive vorticity anomalies are accompanied by cyclonic flows,

southerly winds to the east of the positive vortex and northerly winds to the west can be

found in Fig.3.4e. Besides, the positive vorticity anomalies in the middle are surrounded by

weak negative vorticity anomalies to both the east and west as well as the top.

Along with the vertical stretching of positive vorticity anomalies, winds diverge in the

upper levels and go along the upper branches of the overturning circulation cells. Fig.3.4g-

i shows the vertical profile of horizontal velocity and vorticity field along the longitude

x = 0.43 × 103km at day 4 in the deep2 heating case. As indicated by Fig.3.4i, positive

vorticity anomalies have very narrow meridional extent but deep vertical extent, which are

accompanied by horizontal cyclonic flows, including westerly winds to the south of the pos-

itive vortex and easterly winds to the north as shown in Fig.3.4g. A strong circulation cell

forms around the equator and a weak one forms at high latitudes of the Northern Hemi-

sphere, whose upper and lower branches of meridional winds are shown in Fig.3.4h. Fig.3.4j-l

shows the same fields in the shallow heating case. The overall spatial pattern of velocity and

vorticity fields is similar to those in deep convective heating case, except that the vertical

extent is much shallower. As shown by Fig.3.4l, the positive vorticity vortex is located to the

north of the diabatic heating region and surrounded by weak negative vorticity anomalies.

The shallow congestus heating can also drive a strong overturning circulation cell around

the equator and a weak circulation cell at high latitudes of the Northern Hemisphere. The

corresponding lower and upper branches of these overturning circulation cells are shown in
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Fig.3.4k. Due to the strong momentum dissipation in lower levels, the resulting maximum

zonal winds in the shallow heating case are much weaker than those in the deep convective

heating case.

3.3.4 Eddy flux divergence of zonal momentum and mean flow

acceleration/deceleration

The M-ITCZ equations are a multi-scale model with two spatial zonal scales (planetary-scale

Lp = 5000 km, mesoscale Lm = 500 km). This scale selection is a good approximation for

the hierarchical structure of tropical convection across multiple spatiotemporal scales in the

ITCZ (Majda and Klein, 2003; Majda, 2007). Eddy flux divergence of zonal momentum

arising from the mesoscale dynamics forces the planetary-scale circulation, while the large-

scale flow field provides the background mean flow for the mesoscale dynamics. Specifically,

the planetary-scale zonal momentum equation is derived by taking mesoscale zonal averaging

on Eq.3.4a as follows,

∂ū

∂t
+ v̄

∂ū

∂y
+ w̄

∂ū

∂z
− yv̄ = −dū− ∂

∂y

(
v′u′
)
− ∂

∂z

(
w′u′

)
, (3.15)

where the notation bar is defined in Eq.3.2 and the prime denotes mesoscale fluctuations.

Eq.3.15 describes zonal momentum dynamics on the planetary-scale, which can be used to

model zonal jets associated with the meridional circulation over the eastern Pacific. In de-

tail, the planetary-scale zonal velocity is advected by the two-dimensional planetary-scale

meridional circulation (v̄, w̄) and forced by the Coriolis force and linear momentum damping.

Besides, the eddy flux divergence of zonal momentum that involves mesoscale fluctuations

appears on the right hand side of Eq.3.15 and represents upscale impact of mesoscale fluctua-

tions on the planetary-scale circulation. In fact, the eddy flux divergence of zonal momentum

is referred to convective momentum transport (CMT), which has been studied from different

perspectives to highlight its significance such as stochastic models (Majda and Stechmann,
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2008; Khouider et al., 2012) and dynamical models with cloud parameterization (Majda and

Stechmann, 2009). This eddy flux divergence of zonal momentum in dimensionless units

reads as follows,

FU = − ∂

∂y

(
v′u′
)
− ∂

∂z

(
w′u′

)
, (3.16)

The eddy flux divergence of zonal momentum FU in Eq.3.16 constitutes an upscale zonal

momentum forcing on the planetary scale that can have a significant impact on the planetary-

scale flow. Specifically, positive (negative) anomalies of eddy flux divergence of zonal mo-

mentum FU represent eastward (westward) momentum forcing. Fig.3.5a-c shows eddy flux

divergence of zonal momentum FU in the latitude-height diagram at day 4 in the deep2

heating case. Along the latitude where the positive vortex located (see Fig.3.4i), eastward

momentum forcing is induced by eddy flux divergence of zonal momentum FU with deep

vertical extent, which is mainly contributed by the meridional component of FU in Fig.3.5b.

In addition, meridionally alternating eastward and westward momentum forcing exists at low

latitudes and the middle troposphere of the Northern Hemisphere in Fig.3.5a, which is di-

rectly related to the vorticity dipoles as shown in Fig.3.2g. Lastly, the maximum magnitudes

of both the meridional and vertical components of FU are comparable to each other, provid-

ing significant contributions to the total eddy flux divergence of zonal momentum. Fig.3.5d-f

shows the same fields in the shallow heating case. The most significant FU anomalies are

similar to those in the deep2 heating case but confined in the lower troposphere. Besides the

positive anomalies at high latitudes of the Northern Hemisphere, there are also significant

negative anomalies to the south of the positive anomalies near the surface. At low latitudes

of the Northern Hemisphere at height z = 4 km, the eddy flux divergence of zonal momentum

has significant anomalies with eastward momentum forcing on top of westward momentum

forcing in upward/equatorward tilt. The magnitudes of momentum forcing in the meridional

and vertical components are comparable but their spatial patterns are quite different in this

region. In order to compare the eddy flux divergence of zonal momentum, Fig.3.5g-i shows
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Figure 3.5: Eddy flux divergence of zonal momentum FU in the latitude-height diagram at
day 4. The columns from left to the rights are for deep2, shallow and deep1 heating cases.
The second column share the same color bar at the bottom with the third column. The
three panels from top to bottom are for (a) FU , (b) its meridional component − ∂

∂y

(
v′u′
)

(c)

its vertical component − ∂
∂z

(
w′u′

)
. The dimensional unit of FU is ms−1day−1.
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the same fields in the deep1 heating case. The magnitudes of total eddy flux divergence of

zonal momentum and its meridional and vertical components are much weaker than those

in the shallow heating case in Fig.3.5d-f, highlighting the significant upscale impact in the

shallow heating case.

As indicated by Eq.3.15, eddy flux divergence of zonal momentum arising from the

mesoscale dynamics further forces the planetary-scale circulation and induces zonal jet

anomalies. Its impact can be illustrated through the comparison between numerical so-

lutions with and without the eddy momentum forcing FU . Instead of utilizing the mesoscale

zonally localized diabatic heating in Fig.3.1a, a mesoscale zonally uniform heating profile

is prescribed in the same expression in Eq.3.13, but its horizontal envelope function H (y)

is replaced by the one in Fig.3.1b with the same zonal mean. The differences of mesoscale

zonal mean of zonal velocity reflect the impact of eddy flux divergence of zonal momentum

on the planetary-scale circulation. Fig.3.6a-b shows mean zonal velocity ū in the latitude-

height diagram at day 4 in the zonally localized and uniform deep2 heating case. The

mean zonal velocity fields in both these two cases share several common features, which are

consistent with a strong overturning circulation cell around the equator and a weak circula-

tion cell in the Northern Hemisphere. In particular, the horizontal profiles of velocity and

vorticity fields at different levels in the zonally uniform heating case are shown in panels

(d,h,l) of Fig.3.2. Although the maximum magnitude of zonal wind anomalies due to eddy

flux divergence of zonal momentum in Fig.3.6c is about 1
10

of that in Fig.3.6a-b, most of

these zonal wind anomalies are localized in places where the mean zonal wind is relatively

weak, resulting in significant rectification of zonal jets. Particularly, there are westerly wind

anomalies along the latitude of the positive vortex (see Fig.3.4i), which matches well with

the eastward momentum forcing in the same region in Fig.3.5a. Due to the advection effect

of the mean meridional circulation (v̄, w̄), such eastward zonal wind anomalies extend to

the upper troposphere, the equator and the Southern Hemisphere. Besides, meridionally

alternate zonal wind anomalies in the middle troposphere and low latitudes of the Northern
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Figure 3.6: Mean zonal velocity ū in the latitude-height diagram at day 4. The left panels
from top to bottom show the solutions for (a) zonally localized heating, (b) zonally uniform
heating, (c) their difference (a)-(b) in the deep2 heating case. The right panels (d-f) show
the same fields but for the shallow heating case. The dimensional unit of mean zonal velocity
is ms−1.
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Hemisphere match well with the spatial pattern of the eddy flux divergence of zonal momen-

tum in Fig.3.5a. Fig.3.6d-f shows the same fields in the shallow heating case. The overall

spatial patterns of mean zonal velocity and zonal velocity anomalies are mostly confined in

the shallower levels. The mean zonal velocity in Fig.3.6d shares many common features as

that in the mesoscale zonally uniform heating case in Fig.3.6e. The spatial pattern of mean

zonal wind anomalies in Fig.3.6f is consistent with that of eddy flux divergence of zonal

momentum in Fig.3.5d. There are westerly wind anomalies along the latitude y = 800 km

where the positive vortex is located (see Fig.3.4l) and easterly wind anomalies to the south of

the westerly wind anomalies in the lower troposphere. Zonal wind anomalies with westerlies

on top of easterlies occur at low latitudes of the Northern Hemisphere.

The eddy flux divergence of zonal momentum in Eq.3.16 is a crucial quantity, because it

not only significantly modifies the zonal momentum budget as momentum forcing, but also

involves energy transfer across multiple spatial scales and induces acceleration/deceleration

effects on the planetary-scale mean flow. Here the acceleration and deceleration of eddy flux

divergence of zonal momentum is investigated through the kinetic energy of zonal winds in

Eq.3.9 instead of the total kinetic energy in Eq.3.11. One essential reason is that only the

mesoscale mean zonal velocity is coupled with the planetary-scale gravity waves in Eqs.3.6a-

3.6f, while the mean meridional velocity is directly balanced by the diabatic heating through

Eqs.3.6b-3.6c. The equation for kinetic energy of mean zonal velocity is reduced from Eq.3.9,

∂Ku

∂t
+

∂

∂y
(v̄Ku) +

∂

∂z
(w̄Ku) = yv̄ū− 2dKu + F uū, (3.17)

where Ku = ū2

2
represents kinetic energy of planetary-scale zonal winds.

The eddy energy transfer term F uū in Eq.3.17 is a product of eddy flux divergence

of zonal momentum FU and mean zonal velocity ū, which can be interpreted as acceler-

ation/deceleration effects of F u on the mean zonal winds. If the sign of the term F uū is

positive (negative), the kinetic energy of zonal winds tends to increase (decrease) and the
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Figure 3.7: Acceleration and deceleration of mean zonal velocity due to eddy flux divergence
of zonal momentum in the latitude-height diagram at day 4. The color indicates the value
of the quantity FU ū with positive anomalies for acceleration effects and negative anomalies
for deceleration effects. The panels from left to right are for the cases (a) deep2, (b) shallow,
(c) deep1. The dimensional unit is m2s−2day−1

eddy energy transfer term F uū induces acceleration (deceleration) effects. Besides, the mag-

nitude of acceleration/deceleration effects of the eddy energy transfer F uū depends on the

magnitudes of both eddy flux divergence of zonal momentum F u and mean zonal velocity ū.

Fig.3.7a shows acceleration/deceleration effects of eddy flux divergence of zonal momentum

at day 4 in the deep2 heating case. Along the latitude where the positive vortex is located

(see Fig.3.4i), the acceleration effects are induced by eastward momentum forcing F u on

the westerly mean flows ū. To both the northern and southern sides of that acceleration

effects, the deceleration effects with narrow meridional extent is mostly significant in the

lower troposphere, which decelerate the westerly (easterly) winds to the south (north) of

the positive vortex. At low latitudes of the Northern Hemisphere, acceleration effects are

also significant in the middle troposphere where mean zonal winds are weak in Fig.3.6b and

modified mainly by eddy flux divergence of zonal momentum in Fig.3.5a. Fig.3.7b shows

the acceleration/deceleration effects due to eddy flux divergence of zonal momentum in the

shallow heating case. The most significant acceleration/deceleration effects are confined in

the lower troposphere. Besides the acceleration effects at high latitudes, there are also decel-
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Figure 3.8: A schematic depiction of the multi-scale domain with nested grids. The large
red dots are the coarse grids on the planetary scale. Each coarse grid corresponds to a single
mesoscale domain characterized by a mesoscale box in thick lines. The fine grids in each
mesoscale domain are shown by pink dots.

eration effects of westward (eastward) eddy flux divergence of zonal momentum on the mean

westerly (eastward) winds to the south (north) of the latitude y = 800 km. Such lower-level

deceleration effects in the diabatic heating region is typically seen in other studies about

CMT (Majda and Stechmann, 2008, 2009). As a clear comparison, the eddy energy transfer

F uū in the deep1 heating case in Fig.3.7c is much weaker than that in the shallow heating

case in Fig.3.7b, highlighting the significant upscale impact of mesoscale fluctuations in the

shallow congestus heating in terms of kinetic energy budget.

3.4 ITCZ Breakdown in Zonally Varying Planetary-

Scale Flow

In this section, the M-ITCZ equations are utilized to simulate the ITCZ breakdown process

over the eastern Pacific involving both the mesoscale and planetary-scale dynamics. In

each mesoscale cell, periodic boundary conditions are imposed in the zonal direction and

rigid-lid boundary conditions are imposed in the meridional and vertical directions. On the

planetary scale, the zonal periodic boundary condition is naturally consistent with the belt
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of tropics around the globe. In addition, the model setup and numerical details such as

mesoscale and planetary-scale domain size, spatial and temporal resolutions are exactly the

same as Sec.3.3. Lastly, the whole model is driven by diabatic heating on both mesoscale

and planetary scale, and all physical variables are initialized from a background state of rest.

The whole domain is discretized with nested coarse and fine grids as shown in Fig.3.8. In

the numerical simulations, the MEWTG equations in Eqs.3.4a-3.4d are only valid on each

mesoscale box with the zonally periodic boundary conditions. After taking zonal averaging

of physical variables in each mesoscale domain, the planetary-scale physical quantities on

each coarse grid is obtained and further involved in the planetary-scale gravity waves. More

numerical details are summarized in Appendix.

In the ITCZ, the diabatic heating can be released during tropical precipitation in cloud

clusters. In order to model the ITCZ over the eastern Pacific, diabatic heating Sθ is mod-

ulated by a planetary-scale zonally localized envelope. In general, such a two-scale diabatic

heating Sθ in dimensionless units reads as follows,

Sθ = cF (X)H (x, y)G (z)φ (t) , (3.18)

where F (X) = 1.2e−(X−4)2 is the planetary-scale envelope function , H (x, y) is the horizontal

heating profile, which can be either mesoscale zonally localized heating in Fig.3.1a or uniform

heating in Fig.3.1b. G (z) is the vertical heating profile, which can have either deep or shallow

vertical extent in Fig.3.1c. The magnitude parameter c and the time series φ (t) are the same

to those in Sec.3.3.

3.4.1 Cross section of mean zonal velocity in the heating region

In order to assess the upscale impact of mesoscale fluctuations, two numerical simulations

with either mesoscale zonally localized or uniform deep2 heating are implemented for com-

parison. The difference of zonal velocity anomalies indicates the impact of eddy flux di-
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Figure 3.9: Cross section of mean zonal velocity anomalies in the center of heating region
(longitude X = 19.51× 103 km) at day 4. The left panel is for deep2 heating case and the
right panel is for shallow heating case. The dimensional unit is ms−1.

vergence of zonal momentum on the planetary-scale circulation. Fig.3.9a shows the cross

section of planetary-scale zonal velocity anomalies in the center of the heating region at day

4 in the deep2 heating case. The overall spatial pattern of zonal velocity anomalies here

is quite similar to that in the planetary-scale zonal symmetric case in Fig.3.6c, including

westerly wind anomalies in deep vertical extent near the latitude y = 800 km with its max-

imum strength in the middle troposphere and alternate mean zonal velocity anomalies in

the middle troposphere near the equator. In contrast, Fig.3.9b shows the cross section of

planetary-scale zonal velocity anomalies in the shallow heating case. Compared with the

deep convective heating case in Fig.3.9a, the zonal velocity anomalies on the planetary scale

are mostly confined in the lower troposphere, which is consistent with the limited vertical

extent of the shallow congestus heating. Meanwhile, the spatial pattern of zonal velocity

anomalies is quite similar to the planetary-scale zonally symmetric case in Fig.3.6f.
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3.4.2 Mean zonal velocity in the lower, middle and upper tropo-

spheres

The zonal velocity anomalies due to the eddy flux divergence of zonal momentum have

different spatial patterns at different levels in Fig.3.9. Fig.3.10a-c shows planetary-scale zonal

velocity anomalies at three different levels at day 4 in the deep2 heating case. Firstly, the

significant zonal velocity anomalies are confined in the longitudes between X = 15× 103km

and X = 25 × 103km, which is the same as the zonal extent of the convective envelope

in Eq.3.18. Secondly, the zonal velocity anomalies due to eddy flux divergence of zonal

momentum have different spatial patterns at different levels. In the lower troposphere in

Fig.3.10c, westerly wind anomalies are localized in the northern of the diabatic heating and

weak easterly wind anomalies are to the south. In the middle troposphere in Fig.3.10b,

the westerly wind anomalies at high latitudes of the Northern Hemisphere has stronger

magnitude and broader zonal extent. Besides, there are easterly wind anomalies at low

latitudes of the Northern Hemisphere and westerly wind anomalies to their south and north.

Since the mean zonal winds in the middle troposphere near the equator are relatively weak,

such significant zonal wind anomalies can dramatically change the zonal wind direction

and magnitude. The zonal velocity anomalies in the upper troposphere in Fig.3.10a is

dominated by westerly winds with broad meridional extent, including low latitudes of both

the Northern and Southern Hemisphere as well as the equator. Such broad meridional

extent of zonal velocity anomalies is related with the advection effects by the upper branch

of the circulation cell in northerly returning flows. In contrast, planetary-scale zonal velocity

anomalies at these three levels at day 4 in the shallow heating case are shown in Fig.3.10d-f.

Similarly, the most significant planetary-scale zonal velocity anomalies are confined in the

diabatic heating region between X = 15 × 103km and X = 25 × 103km. At the surface in

Fig.3.10f, there are westerly wind anomalies at high latitudes of the Northern Hemisphere

and easterly wind anomalies to the south, whose spatial pattern is quite similar to the deep
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Figure 3.10: Mean zonal velocity anomalies at different heights at day 4 in the longitude-
latitude diagram. The left column (a-c) is for deep2 heating case and the right column (d-f)
is for shallow heating case. The panels from top to bottom are for heights 14.84 km, 7.48
km and 3.62 km respectively. The dimensional unit is ms−1.
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convective heating case in Fig.3.10c. In the middle troposphere in Fig.3.10e, easterly wind

anomalies are found to the north of the westerly wind anomalies in the Northern Hemisphere,

whose magnitudes are much weaker than those in lower levels. In the upper troposphere in

Fig.3.10d, the magnitude of zonal velocity anomalies is negligible.

In the M-ITCZ equations, the planetary-scale physical variables including large-scale

zonal velocity 〈ū〉, pressure perturbation Π, potential temperature anomalies Θ and sec-

ondary vertical motion W do not depend on meridional coordinate y, representing a

planetary-scale gravity wave with uniform meridional profile. Therefore, the meridional mean

of zonal velocity and potential temperature anomalies (not shown) can be used to character-

ize planetary-scale gravity waves. It turns out that the meridional mean of planetary-scale

zonal velocity and potential temperature has few discrepancies with/without mesoscale fluc-

tuations in both deep and shallow heating cases, meaning that little upscale impact of

mesoscale fluctuations are transported away from the diabatic heating region by planetary-

scale gravity waves.

3.5 Concluding Discussion

The ITCZ over the eastern Pacific is a narrow band of cloudiness, which is accompanied

by low-level convergent winds and warm sea surface temperature below. Unlike the western

Pacific ITCZ that migrates between the Northern and Southern Hemispheres in the seasonal

cycle, the eastern Pacific ITCZ persistently remains in the Northern Hemisphere between

the latitudes 5◦N and 15◦N throughout the whole year. Instead of being a steady state,

the eastern Pacific ITCZ is sometimes observed to undulate and break down into several

vortices, some of which become tropical cyclones and others dissipate and die out. As these

tropical cyclones in great strength move to high latitudes, a new band of ITCZ cloudiness

reforms in the original place. Capturing the flow fields in the baroclinic modes during the

ITCZ breakdown including the undulation of a positive vorticity strip and the formation of
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a strong positive vortex is one of the main motivations in this chapter. Using a multi-scale

model to incorporate both the mesoscale and planetary-scale dynamics during the ITCZ

breakdown and assessing the upscale impact of mesoscale fluctuations on the planetary-scale

circulation is the other one of the main motivations.

Here a multi-scale model (M-ITCZ equations) is used to achieve those motivations as

mentioned above. The M-ITCZ equations were first derived in (Biello and Majda, 2013)

by starting from the primitive equations on an equatorial β plane and following systematic

multi-scale asymptotic methods (Majda and Klein, 2003; Majda, 2007). Two zonal spatial

scales arise naturally from the physically scaling about atmospheric flow field in the ITCZ

(mesoscale Lm = 500 km and planetary-scale Lp = 5000 km). The M-ITCZ equations de-

scribe atmospheric flows on both the planetary scale and mesoscale, and the corresponding

governing equations across these two scales are nonlinearly coupled to each other. Specifi-

cally, the undulation of a positive vorticity strip and formation of a strong positive vortex

are simulated on the mesoscale dynamics of the M-ITCZ equations, which resembles the

formation of tropical cyclones during the ITCZ breakdown. The planetary-scale circulation

is governed by the planetary-scale gravity wave equations in the M-ITCZ equations.

In the first scenario, the planetary-scale flow is assumed to be zonally symmetric, which

suppresses planetary-scale gravity waves in the M-ITCZ equations. Such an idealized as-

sumption isolates the upscale impact of mesoscale fluctuations from the planetary-scale grav-

ity wave and provides a suitable scenario to model the ITCZ breakdown over several hundred

kilometers in the mesoscale domain. Deep convective heating is prescribed as the mesoscale

zonally localized heating in the Northern Hemisphere and uniform cooling elsewhere in the

first baroclinic mode. First, after the flow field is initialized from a background state of rest,

a positive vorticity strip forms at the surface in the northern side of the diabatic heating re-

gion, surrounded by negative vorticity anomalies. As the diabatic heating remains persistent,

the positive vorticity strip has increasing magnitude and starts to undulate, which resembles

the undulation of the ITCZ as observed in (Ferreira and Schubert, 1997). Later, a strong
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positive vortex is generated in the middle of the positive vorticity strip, which mimicks trop-

ical cyclogenesis in the baroclinic modes during the ITCZ breakdown. Since upward motion

prevails in the diabatic heating region, positive vorticity anomalies are advected by upward

motion and stretched vertically to the middle and upper troposphere. In the middle tropo-

sphere, a pair of vorticity dipoles are generated at low latitudes of the Northern Hemisphere,

which also means cyclonic (anticyclonic) flows to the west (east) of the diabatic heating

region. As the counterpart of the positive vorticity strip at the surface, negative vorticity

anomalies with broad meridional extent are induced at the upper troposphere. Secondly, the

eddy flux divergence of zonal momentum is characterized by mid-level (low-level) eastward

(westward) momentum forcing with deep vertical extent at high latitudes of the Northern

Hemisphere and mid-level alternate momentum forcing anomalies at low latitudes. Such

eddy flux divergence of zonal momentum tends to induce westerly wind anomalies at high

latitudes of the Northern Hemisphere, which are further advected by upper-level northerly

winds to the Southern Hemisphere. Besides, mid-level easterly and westerly wind anoma-

lies are also induced at low latitudes of the Northern Hemisphere, which provide extensive

features for the zonal jets in this region. As far as the kinetic energy budget is concerned,

acceleration effects are induced in the region where the positive vorticity anomalies are ver-

tically stretched, while deceleration effects are mainly located in the lower troposphere to

the north and south of the positive vorticity strip. Besides, strong acceleration effects are

also induced in the middle troposphere at low latitudes of the Northern Hemisphere, where

the wind directions and strength are changed dramatically.

Compared with deep convective heating, shallow congestus heating is prescribed in a

vertical profile with its maximum in the lower troposphere. After initialization from a

background state of rest, a positive vorticity strip forms at the surface of the Northern

Hemisphere, which undulates and generates a strong positive vortex in the middle. A direct

comparison between the deep and shallow heating cases with the same maximum heating

magnitude indicates that shallow congestus heating induces stronger vorticity anomalies and
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wind strength at the surface, which is related with the larger horizontal wind convergence

there. In fact, such stronger cyclonic flows driven by shallow congestus heating is also dis-

cussed in a canonical balanced model to simulate “how towers” in the hurricane embryo

(Majda et al., 2008). In the three-dimensional simulation for ITCZ breakdown of (Wang

and Magnusdottir, 2005) using a primitive equation model, shallow heating tends to induce

stronger lower-tropospheric potential vorticity response than the deep heating while the

upper-tropospheric potential vorticity response vanishes. Here, as upward motion prevails

in the diabatic heating region, positive vorticity anomalies in the Northern Hemisphere is

advected by upward motion and lifted up to the middle troposphere. The resulting large-

scale circulation response is confined in the low and middle troposphere and vanishes in the

upper troposphere, which resembles shallow meridional circulation as observed over the east-

ern Pacific. As far as the eddy flux divergence of zonal momentum is concerned, its spatial

pattern in the shallow heating case is mostly confined in the lower and middle troposphere

with eastward momentum forcing at high latitudes of the Northern Hemisphere and alter-

native eastward/westward momentum forcing anomalies at low latitudes. Shallow congestus

heating also induces stronger eddy flux divergence of zonal momentum on the planetary-

scale zonal winds. As for the kinetic energy budget, there are stronger acceleration effects

in the region where the positive vorticity anomalies are vertically stretched and deceleration

effects to its north and south. Besides, acceleration effects are also significant in the lower

troposphere at low latitudes of the Northern Hemisphere.

In the second scenario, the two scales (planetary scale and mesoscale) are set to interact

with each other and the diabatic heating is modulated by a planetary-scale zonally localized

convective envelope to mimic the eastern Pacific ITCZ; The fully coupled M-ITCZ equa-

tions that allow zonal variation of flow fields on both the mesoscale and planetary scale are

used. As studied in (Biello and Majda, 2013), in the mean deep heating case, the resulting

overturning circulation consist of the deep meridional circulation and zonal jets due to the

Coriolis force. The meridional mean of planetary-scale zonal velocity is in the first baro-
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clinic mode and propagates away with the planetary-scale gravity wave, which also brings

negative (positive) potential temperature anomalies and upward (downward) motion to the

west (east), providing favorable (unfavorable) conditions for convection. After replacing the

mean heating by the mesoscale zonally localized heating, significant zonal velocity anoma-

lies are induced in the diabatic heating region, which mainly consist of deep westerly wind

anomalies at high latitudes of the Northern Hemisphere and several easterly/westerly wind

anomalies in the middle troposphere near the equator. As modulated by the planetary-scale

convective envelope, the flow fields in all the mesoscale domains are characterized by cyclonic

flow in the same direction in the Northern Hemisphere. In the shallow heating case, most of

significant zonal velocity anomalies induced by eddy flux divergence of zonal momentum are

confined in the lower troposphere, although the spatial pattern in the corresponding levels

are similar to that in the deep convective heating case. Lastly, the eddy flux divergence of

zonal momentum has weak impact on the meridional mean of zonal velocity and potential

temperature in both deep and shallow heating cases, thus small upscale impact of mesoscale

fluctuations are transported away from the diabatic heating region by the planetary-scale

gravity waves.

This study based on a multi-scale model has several implications for physical interpre-

tation and comprehensive numerical models. First, the MEWTG equations in the idealized

scenario with zonally symmetric planetary-scale flow successfully capture several key features

of the ITCZ breakdown in the baroclinic modes, including the undulation of the positive vor-

ticity strip and formation of a strong positive vortex. Secondly, the M-ITCZ equations model

both the ITCZ breakdown and planetary-scale circulation in a self-consistent framework and

provide assessment of the upscale impact of mesoscale fluctuations in a transparent fashion.

Thirdly, compared with the deep convective heating, shallow congestus heating tends to have

more significant upscale impact on the planetary-scale circulation including stronger eddy

flux divergence of zonal momentum and acceleration/deceleration effects. Lastly, the re-

sulting eddy flux divergence of zonal momentum significantly modifies planetary-scale zonal
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velocity, resulting in the rectification of the ITCZ over the eastern Pacific. Such assessment

of the upscale impact of mesoscale fluctuations associated with the ITCZ breakdown can

help to improve the convective parameterization in more complex numerical models. The

M-ITCZ equations under the current model setup can also be generalized in several ways

and used to model other phenomena in the ITCZ. For example, as suggested in (Biello and

Majda, 2013), instead of prescribing the diabatic heating, an active heating coupling the

M-ITCZ equations with moisture will introduce new realistic features of tropical flows. As

planetary-scale gravity waves propagate westward, negative potential temperature anoma-

lies and upward motion are also carried westward, which provides favorable conditions for

convection. The recently triggered convection through the active heating induces mesoscale

fluctuations and generates upscale impact on the planetary-scale gravity wave in return.

Such mesoscale Rossby wave coupled with planetary-scale gravity wave through an active

heating can be a good candidate for westward moving disturbances as observed in the eastern

Pacific ITCZ (Yang et al., 2003; Serra et al., 2008). In addition, coupling an equation for

the atmospheric boundary layer can further elaborate the M-ITCZ equations and provide

realistic features of tropical phenomena over the eastern Pacific. The resulting model should

be useful to model the convective instability in the ITCZ and flow fields during the ITCZ

breakdown.

3.6 Numerical Scheme

Once again, the M-ITCZ equations consist of two zonal spatial scales (planetary-scale and

mesoscale), and the corresponding dynamics on these scales are coupled to each other in com-

plete nonlinearity. A suitable numerical scheme is required to simulate this model and satisfy

the following properties. First of all, the M-ITCZ equations are derived by using multi-scale

asymptotic methods, which assume these two zonal spatial scales are independent when

the small parameter (Rossby number ε) goes to zero in the asymptotic limit. Secondly,
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the MEWTG equations in Eqs.3.4a-3.4d are totally nonlinear with the advection term in

three-dimensional flows. Thirdly, although both mesoscale and planetary-scale dynamics are

coupled to each other, a suitable averaging method need to be used so that large-scale physi-

cal variables can be obtained and updated in each time step. Lastly, the hydrostatic balance

is valid on the planetary scale in Eq.3.1e, which requires a vertical boundary condition for

the planetary-scale pressure perturbation.

3.6.1 Nested grids in the multi-scale domain

There are two zonal spatial scales in the M-ITCZ equations. One is the planetary scale

X (Lp = 5000 km) and the other is the mesoscale x (Lm = 500 km). Therefore, the

whole domain can be discretized with nested coarse and fine grids, as shown in Fig.3.8. In

the numerical simulations, the MEWTG equations in Eqs.3.4a-3.4d are only valid on each

mesoscale box with some suitable boundary conditions. After taking zonal averaging of

physical variables in each mesoscale box, the planetary-scale quantities on each coarse grid

can be obtained.

During the derivation of M-ITCZ equations by using the multi-scale asymptotic method,

the sublinear growth condition is imposed to avoid secular growth Majda and Klein (2003).

In details, the sublinear growth condition requires that the zonal averaging of mesoscale

zonal derivatives of physical variables vanish when the small parameter (Rossby number ε)

goes to zero and the size of the mesoscale domain goes to infinity in the asymptotic limit.

However, in the numerical simulations, the size of the mesoscale domain is finite due to

nonzero small parameter (Rossby number ε). In order to be consistent with the sublinear

growth condition, the local periodicity boundary condition in zonal direction is imposed,

which requires that the numerical solutions are zonally periodic in each mesoscale box.

164



3.6.2 Fractional step method

The numerical scheme for solving the M-ITCZ equations can be split into two alternative

steps as time goes on. The first step is to solve the MEWTG equations in each mesoscale

box and the second step is to solve the planetary-scale gravity wave equations in the full

domain after calculating mean value of all physical variables in each mesoscale box. In

order to solve the MEWTG equations, the Helmholtz decomposition is utilized to decom-

pose horizontal velocity with stream function and velocity potential, which turn out to be

governed by two coupled Poisson’s equations. Besides, the horizontal vorticity is governed

by a forced advection equation in three-dimensional flows, which can be solved by using

the Corner-Transport-Upwind (CTU) scheme LeVeque (2002). In addition, the predictor-

corrector scheme is utilized to improve temporal accuracy with two stages. A cheap first-

order upwind scheme is implemented in the first stage. After estimating the velocity field at

half time step in the first stage, the second-order piecewise linear CTU scheme is applied to

calculate the horizontal vorticity in the second stage. As for solving the planetary-scale grav-

ity wave equations, all physical variables are decomposed into different baroclinic modes and

numerical solutions in each baroclinic mode are solved by using the Fast Fourier Transform.

In each time step, the fractional step method is applied on the M-ITCZ equations. The

full numerical routine is organized as shown in the following box.
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Step 1: solve the MEWTG equations in each single mesoscale box,

Du

Dt
− yv = −px − du, (3.19a)

Dv

Dt
+ yu = −py − dv, (3.19b)

w = Sθ, (3.19c)

ux + vy + wz = 0, (3.19d)

and compute zonal and meridional averaging of u in each mesoscale box,

u −→ 〈ū〉 . (3.20)

Step 2: solve the planetary-scale gravity wave equations,

〈ū〉t + ΠX = 0, (3.21a)

Πx = Πy = 0, Πz = Θ, (3.21b)

Θt +W = 0, (3.21c)

[〈ū〉 − U ]X +Wz = 0, (3.21d)

and update u in each mesoscale box by adding the increment of 〈ū〉,

u+ ∆ 〈ū〉 −→ u. (3.22)

In the end of step 1, the mesoscale zonal and meridional average of zonal velocity 〈ū〉 is

calculated so that the planetary-scale mean zonal velocity can be plugged into the gravity

wave equations in step 2. Specifically, the trapezoidal rule for meridional averaging is used

since it is consistent with the centered difference scheme used in solving the coupled Poisson

equation for velocity potential and stream functions in Sec.3.6.3.2. In the end of step 2, the

zonal velocity anomalies ∆ 〈ū〉 between two time steps are calculated. According to Eq.3.1a,
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such zonal velocity anomalies are applied to the total zonal velocity variables u through

the large-scale pressure perturbation ΠX , which is independent of the mesoscale zonal and

meridional coordinates (x, y). Therefore, the total zonal velocity u in each mesoscale box is

updated by adding the increment of 〈ū〉 as Eq.3.22. Besides, such large-scale zonal velocity

anomalies do not modify the vorticity ξ = vx − uy but the mean zonal velocity at the

meridional boundaries.

3.6.3 Solving the MEWTG equations

In this section, the numerical scheme for solving the MEWTG equations (Eqs.3.19a-3.19d)

is included.

According to the Helmholtz theory, the horizontal velocity field (u, v) can be decomposed

into the stream function ψ and velocity potential φ as follows

u = −ψy + φx, (3.23)

v = ψx + φy. (3.24)

After plugging Eqs.3.23-3.24 into Eq.3.19d, the Poisson’s equation for the velocity potential

φ is obtained,

ux + vy = φxx + φyy = −wz = − ∂

∂z
Sθ. (3.25)

Besides, the vorticity equation for ξ = vx − uy can be obtained by manipulating Eqs.3.19a-

3.19b,

ξt + uξx + vξy + wξz = − (ξ + y) (ux + vy)− wxvz + wyuz − v − dξ

= (ξ + y)
∂

∂z
Sθ − vz

∂

∂x
Sθ + uz

∂

∂y
Sθ − v − dξ. (3.26)

According to the definition of the vorticity ξ, the Poisson’s equation for the stream function
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ψ is also obtained,

ξ = vx − uy = ψxx + ψyy. (3.27)

3.6.3.1 The corner-transport upwind scheme for the unforced vorticity equation

As shown in Eq.3.26, the horizontal vorticity in the MEWTG equations is governed by a

three-dimensional advection equation as follows,

ξt + uξx + vξy + wξz = (ξ + y)
∂

∂z
Sθ − vz

∂

∂x
Sθ + uz

∂

∂y
Sθ − v − dξ. (3.28)

In this section, a second-order non-oscillatory corner-transport upwind (CTU) method

with piece-wise linear approximation LeVeque (2002) is described. To be brief, all terms on

the right hand side of Eq.3.28 are denoted by f . The numerical scheme for the unforced

advection equation is first discussed here, which will be extended to the forced case in

Sec.3.6.3.3. The unforced vorticity equation is as follows,

ξt + uξx + vξy + wξz = 0. (3.29)

According to the method of characteristics, ξ does not change along characteristics line,

thus

·
x = u (x (s) , y (s) , z (s) , s) , (3.30)

·
y = v (x (s) , y (s) , z (s) , s) , (3.31)

·
z = w (x (s) , y (s) , z (s) , s) , (3.32)

·
ξ = 0. (3.33)

A finite-volume type description is used to derive the CTU scheme. Let Ωi,j,k =[
xi− 1

2
, xi+ 1

2

]
×
[
yj− 1

2
, yj+ 1

2

]
×
[
zk− 1

2
, zk+ 1

2

]
denotes a generic control volume and tn = nδt be
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a time discretization. Then the volume average of ξ at tn+1

Qn+1
i,j,k =

1

∆X∆Y∆Z

∫ ∫ ∫
Ωi,j,k

ξ (x, y, z, tn + δt) dxdydz, (3.34)

satisfies

Qn+1
i,j,k =

1

∆X∆Y∆Z

∫ ∫ ∫
Ω̃i,j,k

ξ (x, y, z, tn) dxdydz, (3.35)

where Ω̃i,j,k is the original copy of the control volume Ωi,j,k.

Suppose the flow field at half time step un+ 1
2 , vn+ 1

2 , wn+ 1
2 is approximated as discussed in

Sec.3.6.3.3, then the corresponding displacement can also be approximated by the midpoint

integration formula:

δx = un+ 1
2 δt, (3.36)

δy = vn+ 1
2 δt, (3.37)

δz = wn+ 1
2 δt. (3.38)

Therefore, the original copy of the control volume can be approximated as follows:

Ω̃i,j,k =
[
xi− 1

2
− δx, xi+ 1

2
− δx

]
×
[
yj− 1

2
− δy, yj+ 1

2
− δy

]
×
[
zk− 1

2
− δz, zk+ 1

2
− δz

]
. (3.39)

The corner-transport upwind scheme (CTU) can be applied in such scenario. The essen-

tial idea in this numerical scheme is illustrated by Fig.3.11. In Fig.3.11, the gray rectangle

is the original copy of the control volume Ω̃i,j,k, which can be separated into several small

rectangle areas A1, A2, A3, A4, meaning that the mean value on the control volume has

contributions from the neighbor cells. Usually, the first-order CTU scheme assumes the con-

served quantity ξ is constant in each cell. In order to achieve second-order accuracy, the

piece-wise linear reconstruction of the solution ξngiven its volume average is introduced as
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follows,

ξ (x, y, tn) = P n
i,j,k (x, y, z) = Qn

i,j,k + Sxi,j,k (x− xi) + Syi,j,k (y − yj) + Szi,j,k (z − zk) . (3.40)

Here Sxi,j,k, S
y
i,j,k, S

z
i,j,k are slope limiters defined as follows

Sxi,j,k =
1

4X
Υ

(
Qn
i,j,k −Qn

i−1,j,k, Q
n
i+1,j,k −Qn

i,j,k,
1

2

(
Qn
i+1,j,k −Qn

i−1,j,k

))
, (3.41)

Syi,j,k =
1

4Y
Υ

(
Qn
i,j,k −Qn

i,j−1,k, Q
n
i,j+1,k −Qn

i,j,k,
1

2

(
Qn
i,j+1,k −Qn

i,j−1,k

))
, (3.42)

Szi,j,k =
1

4Z
Υ

(
Qn
i,j,k −Qn

i,j,k−1, Q
n
i,j,k+1 −Qn

i,j,k,
1

2

(
Qn
i,j,k+1 −Qn

i,j,k−1

))
, (3.43)

Υ (a, b, c) =

 min (|a|, |b|, |c|) sign (a) if a,b,c have same sign

0 otherwise
. (3.44)

The numerical scheme for updating Qn
i,j,k (the volume average of ξ) involves its value in

all neighboring cells as well as the slope limiters in Eqs.3.41-3.44. The exact expression is

quite long and ignored here. More details can be found in LeVeque (2002).

3.6.3.2 The coupled Poisson’s equations for velocity potential and stream func-

tion

As shown in Eq.3.25 and Eq.3.27, both the velocity potential φ and the stream function ψ are

governed by Poisson’s equations. Besides, the physical boundary conditions are expressed in

terms of flow field instead of velocity potential and stream function , thus these two Poisson’s

equations are coupled to each other. Two boundary conditions at both the northern and

southern boundaries are imposed as follows,

Boundary Condition 1: meridional velocity vanishes at the meridional boundaries

y = ±L∗,

v (±L∗) = 0, (3.45)
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ii-1 i+1

j

j+1

j-1

A1

A4A3

A2

Figure 3.11: A schematic depiction of the essential idea behind the corner transport upwind
scheme. The gray box denotes the original copy of the control volume (i, j), which moves in
the direction as indicated by the arrows. This gray box overlaps the neighboring cells and
can be divided into as denoted into 4 small rectangles as denoted by A1, A2, A3, A4. Such
two-dimensional case can be extended to three-dimensional case with 8 neighboring cells.

which states that there is neither inflow nor outflow through meridional boundaries. Al-

though in reality the tropical flows can interact with the mid-latitude atmospheric flows,

this boundary condition is chosen so that the meridional circulation in the tropics is closed

and isolated. As already mentioned in Biello and Majda (2013), the meridional component

of the flows in the M-ITCZ theory can be matched to meridional flows from higher latitudes

ultimately.

Boundary Condition 2: zonal velocity fluctuation u′ vanishes at the meridional bound-

aries y = ±L∗,

u = ū ≡ 1

P

∫ P

0

u (X, x, y, z, t) dx at y = ±L∗, (3.46)

which amounts to assuming the turbulent flow is zero at y = ±L. This boundary condition

makes physical sense if the artificial boundaries are far away from the region of convection

(Sθ 6= 0) and that the turbulent flow gets attenuated quickly by dissipation before it reaches

the two meridional boundaries.
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To sum up, the coupled Poisson’s equations can be obtained, along with the zonal and

meridional boundary conditions as follows,

φxx + φyy = − ∂

∂z
Sθ (3.47)

ψxx + ψyy = ξ (3.48)

BC1: φ, ψ are periodic in x

BC2: ψx + φy = 0 at y = ±L∗

BC3: −ψy + φx = ū at y = ±L∗
The coupled Poisson’s equations above need an extra equation for ū at meridional bound-

aries to get closure. After taking zonal averaging in each mesoscale box, Eq.3.19a at merid-

ional boundaries can be reduced to

ūt + uux + vuy + wuz − yv̄ = −px − dū, (3.49)

where the second term on the left hand side vanishes due to the boundary condition in

Eq.3.46, the third and fifth terms vanish due to the boundary condition in Eq.3.45 and

the first term on the right side is zero due to local periodicity assumption as explained in

Sec.3.6.1. Then Eq.3.19a at meridional boundaries is rewritten as follows,

ūt + wuz = −dū. (3.50)

This equation can be further simplified by using the boundary condition in Eq.3.46,

ūt + w̄ūz = −dū. (3.51)

Eq.3.51 is a one-dimensional advection equation, which can be solved simultaneously with
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the vorticity equation in Eq.3.28 by using a semi-Lagrangian scheme. The details about the

numerical scheme are as follows,

Firstly, the departing position of each z̃j is calculated,

z̃j = zj − δtw̄j, (3.52)

where time step δt is chosen to be small enough so thatδtw̄j � δz, thus

|z̃j−zj |
δz
≤ 1

2
.

Secondly, quadratic interpolation method is used to estimate ˜̄u (z̃j, tn+1)

(let α =
δtw̄j
δz

),

˜̄u (z̃j, tn+1) =

(
α2

2
− α

2

)
ūj+1 +

(
1− α2

)
ūj +

(
α2

2
+
α

2

)
ūj−1, (3.53)

Lastly, the quantity ū is damped along each characteristic line, which is

governed by an ordinary differential equation d
dt
u (z (t) , t) = −du. The

analytical solution is used for the last damping step:

ū (zj, tn+1) = e−dδt ˜̄u (z̃j, tn+1) . (3.54)

In order to increase both efficiency and accuracy when solving the coupled Poisson’s

equations in Eqs.3.47-3.48, the fast Fourier transform (FFT) subroutine written in Fortran

77 is utilized. In this Fortran subroutine, all real functions (e.g. f (x)) are transformed into

the following form (In the numerical simulation, the x-grid number Nx is set to be an odd

number for simplicity)

f (x) =
∑
k=1

[
fAk cos

(
2πkx

L

)
− fBk sin

(
2πkx

L

)]
+ f0. (3.55)

By using Fourier series expansion for all physical variables φ, ψ, ξ, f (here f denotes
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− ∂
∂z
Sθ), the coupled Poisson’s equations can be decomposed into different wavenumber

modes along with the corresponding boundary conditions as follows,

#1, wavenumber k = 0

φ0,yy = f0 (3.56)

BC1 : φ0,y = 0 y = ±L∗ (3.57)

ψ0,yy = ξ0 (3.58)

BC2 : −ψ0,y = ū y = ±L∗ (3.59)

#2, wavenumber k 6= 0

−4π2k2

L2
φAk + φAk,yy = fAk (3.60)

−4π2k2

L2
ψBk + ψBk,yy = ξBk (3.61)

BC1 :
2πk

L
ψBk − φAk,y = 0 y = ±L∗ (3.62)

BC2 : ψBk,y −
2πk

L
φAk = 0 y = ±L∗ (3.63)

#3, wavenumber k 6= 0

−4π2k2

L2
φBk + φBk,yy = fBk (3.64)

−4π2k2

L2
ψAk + ψAk,yy = ξAk (3.65)

BC1 :
2πk

L
ψAk + φBk,y = 0 y = ±L∗ (3.66)

BC2 : ψAk,y +
2πk

L
φBk = 0 y = ±L∗ (3.67)

In order to solve the coupled 1D Poisson’s equations above, the centered difference scheme
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is used to discretize the solution in meridional direction. At the northern and southern

boundary, ghost cells are used to enforce the boundary conditions and each set of equations

(#1,#2,#3) is reduced into a linear system of the form

AX = B. (3.68)

One notable feature in the case #1 for wavenumber k = 0 is that both the velocity

potential φ and the stream function ψ are unique up to a constant. In order to uniquely

determine their value, the mean zero condition (
N∑
j=1

ϕj = 0) is enforced. Here the constant

on the right hand side is arbitrary since the velocity field is determined by the gradient of

the velocity potential φ and the stream function ψ. The coefficient matrix A and vector B

in Eq. 3.68 for each wavenumber mode are listed below.
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#1 wavenumber k = 0

(1) velocity potential φ

X =

(
φ1 φ2 · · · φN−1 φN

)T
(3.69)

B =

(
f1 f2 · · · fN−1 0

)T
(3.70)

A =
1

(δy)2



−2 2 0 0 0

1 −2 1 0 0

0 · · · · · · · · · 0

0 0 1 −2 1

1 1 1 1 1


(3.71)

(2) stream function ψ

X =

(
ψ1 ψ2 · · · ψN−1 ψN

)T
(3.72)

B =

(
ξ1 − 2ū

δy
ξ2 · · · ξN−1 0

)T
(3.73)

A =
1

(δy)2



−2 2 0 0 0

1 −2 1 0 0

0 · · · · · · · · · 0

0 0 1 −2 1

1 1 1 1 1


(3.74)

The ones on the last row of the matrix A enforce the mean zero condition and recover

uniqueness.
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#2 wavenumber k 6= 0, a = 1
(δy)2

, b = 4π2k2

L2 , c = 4πk
Lδy

X =

(
φ1 φ2 · · · φN ψ1 ψ2 · · · ψN

)T
(3.75)

B =

(
f1 f2 · · · fN ξ1 ξ2 · · · ξN

)T
(3.76)

A =



−2a− b 2a −c

a −2a− b a

· · · · · · · · ·

a −2a− b a

2a −2a− b c

−c −2a− b 2a

a −2a− b a

· · · · · · · · ·

a −2a− b a

c 2a −2a− b


(3.77)

#3 wavenumber k 6= 0,a = 1
(δy)2

, b = 4π2k2

L2 , c = 4πk
Lδy

X =

(
φ1 φ2 · · · φN ψ1 ψ2 · · · ψN

)T
(3.78)

B =

(
f1 f2 · · · fN ξ1 ξ2 · · · ξN

)T
(3.79)

A =



−2a− b 2a c

a −2a− b a

· · · · · · · · ·

a −2a− b a

2a −2a− b −c

c −2a− b 2a

a −2a− b a

· · · · · · · · ·

a −2a− b a

−c 2a −2a− b


(3.80)
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3.6.3.3 The predictor-corrector scheme for the forced vorticity equation

As mentioned in Sec.3.6.3.1, the displacement (δx, δy, δz) is required to be approximated at

the half time step. In the numerical simulations, this displacement is approximated by a

first-order upwind scheme in the first stage of the predictor-corrector scheme.

The whole numerical routine in the first stage is as follows. First, the first-order upwind

scheme is used to solve the vorticity equation in Eq.3.28 at half time step, from tn to tn + δt
2

,

and all the forcing terms on the right hand side are assumed to be constant. Since this is a

first-order explicit scheme, the computation expense is relatively cheap. At the end of this

step, the vorticity ξn+ 1
2 at half time step is obtained. Then, the flow field

(
un+ 1

2 , vn+ 1
2

)
at half time step is recovered by solving the coupled Poisson’s equations as explained in

Sec.3.6.3.2. Meanwhile, the mean zonal velocity ū at the southern boundary condition in

Eq.3.51 is updated at half time step . The vertical velocity wn+ 1
2 at half time step is obtained

by taking averaging of its value at tn and tn+1. Finally, the displacement (δx, δy, δz) is

calculated by using the formulas in Eqs.3.36-3.38. The estimated displacement (δx, δy, δz)

completes the numerical scheme for solving the unforced vorticity equation in Eq.3.29.

As for the vorticity Equation 3.29 with nonzero forcing, the solution has the following

general form,

ξ (x (t) , y (t) , z (t) , t) = ξ (x0, y0, z0, t0) +

∫ t

t0

f (x (s) , y (s) , z (s) , s) ds, (3.81)

where the integral on the right hand side is approximated by the mid-point approximation

formula

ξ (x (t) , y (t) , z (t) , t) = ξ (x0, y0, z0, t0) + δtf
(
xn+ 1

2 , yn+ 1
2 , zn+ 1

2 , tn+ 1
2

)
. (3.82)

Similarly, the mid-time displacement can also be evaluated by using the estimated velocity
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field at the half time step,

xn+ 1
2 = xi − un+ 1

2
δt

2
, (3.83)

yn+ 1
2 = yj − vn+ 1

2
δt

2
, (3.84)

zn+ 1
2 = zk − wn+ 1

2
δt

2
. (3.85)

However, the half-time flow field in Eqs.3.83-3.85 at the location
(
xn+ 1

2 , yn+ 1
2 , zn+ 1

2

)
won’t typically be on a grid point,, while the first-order upwind scheme in the first stage

only provide approximated half-time flow field on fixed grid points. Therefore the tricubic

interpolation in three dimensions Lekien and Marsden (2005) are implemented to approxi-

mate the forcing term f
(
xn+ 1

2 , yn+ 1
2 , zn+ 1

2 , tn+ 1
2

)
at the location

(
xn+ 1

2 , yn+ 1
2 , zn+ 1

2

)
using

the provided grid point values.

3.6.4 Solving the planetary-scale gravity wave equations

The gravity wave equations, on the planetary scale in Eqs.3.21a-3.21d, only involve large-

scale variables Π,Θ,W, 〈ū〉, which have dependence on the planetary-scale zonal coordinate

X and vertical coordinate z. In the numerical simulations, the belt of tropics around the

equator with zonal length 40000 km is chosen as the full domain. Thus the solutions should

be periodic in the zonal direction. In order to focus on the atmospheric dynamics in the

troposphere, rigid-lid boundary conditions at both the top and bottom are imposed by

assuming no inflow/outflow through the vertical boundaries,

W |z=0,π = 0, (3.86)

where W represents a residual vertical circulation that involves both secondary vertical

velocity and high order diabatic heating Biello and Majda (2013).
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3.6.4.1 Decomposition into barotropic and baroclinic modes

It is well known that such linear equations in Eqs.3.21a-3.21d with rigid-lid boundary condi-

tions can be solved with explicit solution formulas in both barotropic and baroclinic modes

Majda (2003). In particular, the harmonic functions (sine and cosine functions) are a com-

plete set of basis functions, which also satisfy the rigid-lid boundary conditions in Eq.3.86.

Thus all these physical variables can be decomposed into barotropic and baroclinic modes

as follows,

〈ū〉 = U +
∞∑
q=1

uq cos (qz) , (3.87)

Π = Π0 +
∞∑
q=1

Πq cos (qz) , (3.88)

Θ =
∞∑
q=1

Θq [−q sin (qz)] , (3.89)

W =
∞∑
q=1

Wq [−q sin (qz)] , (3.90)

where the barotropic mode of vertical velocity W and potential temperature anomalies Θ

vanishes due to the rigid-lid boundary conditions in Eq.3.86.

By using the ansatz for all large-scale physical variables in Eqs.3.87-3.90, the original

large-scale gravity wave equations in Eqs.3.21a-3.21d can be separated into equations on

each specific vertical mode,
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#1, barotropic mode q = 0:

Ut + (Π0)X = 0, (3.91)

where the barotropic mode of pressure perturbation Π0 does not appear

in other equations. Suppose the pressure perturbation at the surface Πs is

prescribed as boundary condition, then Π0 can be determined by enforcing

Eq.3.88 at z = 0,

Π0 = Πs −
∞∑
q=1

Πq. (3.92)

#2, baroclinic modes q > 0

(Uq)t + (Πq)X = 0, (3.93a)

Πq = Θq, (3.93b)

(Θq)t +Wq = 0, (3.93c)

(uq)X − q
2Wq = 0. (3.93d)

In the numerical simulations, the barotropic mode of pressure perturbation Π0 is as-

sumed to be a constant so that the barotropic mode of zonal velocity U does not change

in the planetary-scale gravity wave equation according to Eq.3.91. Such zonally uniform

assumption for barotropic mode of planetary-scale pressure perturbation is used to simplify

the discussion and emphasize gravity waves in the baroclinic modes, which are thought to

be more relevant in nature Kiladis et al. (2009).
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3.6.4.2 Gravity waves in the baroclinic modes

The set of linear equations in Eqs.3.93a-3.93d for the baroclinic modes are simplified by

getting rid of the variables Πq and Wq:

(Uq)t + (Θq)X = 0, (3.94)

(Θq)t +
1

q2
(Uq)X = 0, (3.95)

which can be further reduced into the wave equation, although Eqs.3.94-3.95 are easier to

solve numerically.

Considering the fact that both Uq and Θq are zonally periodic in the whole domain, they

can be expanded in Fourier series with respect to wavenumber k,

Uq =
∑
k

ukqe
i2πkx
Lp , (3.96)

Θq =
∑
k

θkq e
i2πkx
Lp , (3.97)

where Lp = 40000 km denotes the length of the tropics around the equator, q is the vertical

index for different baroclinic modes.

For each specific baroclinic mode q and zonal wavenumber k, Eqs.3.94-3.95 can be rewrit-

ten in vector form as follows,

Xt + AX = 0, (3.98)

where the vector X denotes

 ukq

θkq

 and the coefficient matrix A denotes

 0 i2πk
Lp

i2πk
q2Lp

0

.

3.6.5 Code validation

As shown in Sec.3.6.2, the M-ITCZ equations are split into two steps by the numerical scheme

via the fractional step method. The first step is to solve the three-dimensional nonlinear
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MEWTG equations in Eqs.3.19a-3.19d and the second step is to solve the two-dimensional

linear planetary-scale gravity wave equations in Eqs.3.21a-3.21d. After implementing the

numerical scheme described in the above sections, the code written in Fortran 77 is validated

in this section. However, instead of validating the code for the M-ITCZ equations directly,

the two steps in the fractional step method are validated separately, which can provide

necessary conditions for the accuracy and convergence of the numerical scheme.

The MEWTG equations are three-dimensional fully nonlinear equations with the rigid-

lid boundary conditions in meridional and vertical boundaries and the periodic boundary

condition in the zonal direction. It is difficult to find such an analytical solution that satisfies

both the equations and boundary conditions. An alternative method to validate the code

is to prescribe a specific analytical solution which satisfies boundary conditions but not

the equations. In order to guarantee that this prescribed analytical solution satisfies the

equations, some extra forcing terms must be added on the right hand side of the equations,

which can serve as extra forcing in the numerical scheme. Then by doubling the spatial

and temporal resolutions, the convergence and accuracy of the numerical scheme can be

investigated.

Each mesoscale domain in dimensionless units is 0 ≤ x < 2, −1 ≤ y ≤ 1, 0 ≤ z ≤ π for

longitude x, latitude y and height z. In order to study the convergence rate of the numerical

scheme, 5 numerical experiments in doubling spatial and temporal resolutions have been

examined. The numerical experiment in the lowest spatial and temporal resolution has grid

numbers Nx = 11, Ny = 11, Nz = 17, which corresponds to grid spacing ∆x = 0.18,

∆y = 0.20, ∆z = 0.20. The total time length is 2 in dimensionless units and there are

Nt = 50 time steps in the lowest resolution numerical experiment.

The example for code validation is prescribed to satisfy zonal periodic boundary condition

and meridional and vertical rigid-lid boundary conditions. The exact expressions of velocity

183



field in dimensionless units read as follows,

u = cos

(
πy

Ly

)
cos (z) sin (t) , (3.99)

v = − sin

(
2πx

Lx

)
sin

(
πy

Ly

)
cos (z) sin (t) , (3.100)

w =
π

Ly
sin

(
2πx

Lx

)
cos

(
πy

Ly

)
sin (z) sin (t) , (3.101)

where Lx, Lz denote the zonal and vertical extents of the domain and Ly denotes half merid-

ional extent of the domain.

Here differences between the true solution as prescribed in Eqs.3.99-3.101 and the nu-

merical solution in L∞ norm are used to estimate accuracy and convergence of the numerical

scheme. Fig.3.12 shows the numerical error for the horizontal flow field of 5 numerical

experiments at time t = 2 in different spatial resolutions. Firstly, the numerical error of

both zonal velocity and meridional velocity decreases as spatial and temporal resolutions

increases, which indicates the convergence of the numerical scheme. Secondly, as demon-

strated in Sec.3.6.3, the numerical scheme for solving the MEWTG equations is expected to

reach second-order accuracy while the numerical error in Fig.3.12 decreases slower than the

second-order convergence but faster than first-order convergence. One possible reason for

this behavior is using the first-order tricubic interpolation for estimating three-dimensional

forcing in Sec.3.6.3.3. In order to let the prescribed flow field satisfy the MEWTG equations,

several extra forcing terms are added in the numerical scheme. The way of linearly adding

extra forcing terms into the numerical scheme can be another possible reason for the loss of

accuracy. Besides, in the piecewise corner-transport upwind (CTU) scheme, slope limiters

are used to approximate the slope of quantities in each cell. Such limiters will also destroy

the accuracy of the numerical scheme near shocks and large gradients.

The planetary-scale domain in dimensionless units is 0 ≤ x < 8, 0 ≤ z ≤ π for longitude

X and height z. In order to validate the FFT code in a variety of cases, several solutions

184



Figure 3.12: The L∞ norm numerical errors of the horizontal flow field in the logarithmic
diagram. The blue line is for zonal velocity and red line is for meridional velocity. The
two dashed black lines denote first-order and second-order convergence rate separately. The
horizontal axis shows the scaled grid number of these 5 numerical experiments in increasing
resolutions and N=1 corresponds to the lowest resolution numerical experiment.

in different zonal wavenumber and baroclinic modes are chosen and compared with the

numerical solutions. In these numerical experiments, the grid number along the longitudes

is Nxp = 41 and that in height is Nz = 65, which correspond to grid spacing ∆X = 0.20 in

longitude and ∆z = 0.05 in height. The total time length is 2 in dimensionless units and

here time step number Nt = 200 is chosen to avoid violating the CFL condition.

In order to validate the accuracy of the numerical scheme for solving the planetary-scale

gravity wave equations, a set of linear solutions involving zonal velocity U and potential

temperature anomalies Θ are prescribed as follows,

U = sin

2πk
(
X − t

q

)
Lp

 cos (qz) , (3.102)

Θ = − sin

2πk
(
X − t

q

)
Lp

 sin (qz) , (3.103)
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Case 1 2 3 4
(k, q) (1, 0) (1, 1) (1, 2) (2, 2)∣∣∣U − Ũ ∣∣∣

L∞
4.86× 10−8 4.51× 10−8 3.71× 10−8 4.51× 10−8∣∣∣Θ− Θ̃

∣∣∣
L∞

0 4.53× 10−8 1.68× 10−8 2.27× 10−8

Table 3.2: Numerical errors in L∞ norm in 4 cases with different zonal wavenumber and
baroclinic modes. The parameter k denotes zonal wavenumber and q is the vertical index

for different baroclinic modes. (U,Θ) are true solutions and
(
Ũ , Θ̃

)
are numerical solutions.

where Lp = 8 denotes the zonal extent of the full domain. The parameter k denotes zonal

wavenumber and q is the vertical index for different baroclinic modes.

The numerical error is calculated in the L∞ norm for estimating accuracy of the numerical

scheme. The details for the examples and numerical errors are summarized in Table.3.2. The

numerical errors for both planetary-scale zonal velocity and potential temperature are in the

order of 10−8, which is in the same order as the variables declared in the Fortran code. Such

efficiency and accuracy of the numerical scheme is due to the zonal periodicity of the true

solutions and linearity of the equations as well as the implementation of the fast Fortran

transform method.
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